PUBLICACION N.º 106

EXPLORACION
DE
PLACERES AURIFEROS

POR EL
Ing. CARLOS G. BRAVO

BUENOS AIRES
1934
Buenos Aires, septiembre 27 de 1933.

A S. E. el señor Ministro de Agricultura de la Nación,

Ingeniero don Luis Duhau.

S/D.

En el mes de junio del año ppdo., el doctor Benito Villanueva solicitó la cooperación técnica de esta Dirección para la realización de una formal exploración aurífera que deseaba realizar por su cuenta en la zona de Río Blanco (Famatina), provincia de La Rioja.

Compenetrado el subscripto de los beneficios de orden general que resultarían contribuyendo la Dirección a la realización de esos trabajos, obtuvo autorización de ese Ministerio para prestarla.

Ese trabajo, conjuntamente con otros realizados por personal técnico de los servicios Minero y Geológico, ha iniciado la serie de obras en que está empeñada esta Dirección en llevar a cabo sobre asuntos de explotación de oro en la República Argentina.

Tales obras responden al fin de procurar, por todos los medios a nuestro alcance, despertar el espíritu minero en nuestra población, para que se dediquen hombres y capitales nacionales a esa rama de la actividad industrial.

La industria aurífera en la República Argentina ha tenido en épocas pasadas su importante desarrollo, permitiendo a buen número de habitantes vivir holgadamente con el producto obtenido. Hoy día ha decaído considerablemente, pudiendo decirse que sólo se hace en una forma muy limitada en los placeros auríferos de Cañada Honda y La Carolina, en la provincia de San Luis; Andacollo en Neuquén, Los Maitenes en el Chubut, y en algunas otras regiones de Jujuy, Santa Cruz y Tierra del Fuego.

El primer paso para reanudar la explotación de oro en placeros y aluviones, es una formal exploración de los mismos. Esta exploración es la base para planear la explotación ulterior, la que tendrá un desarrollo eficiente o llegará a un fracaso, según que la exploración haya sido bien o mal hecha. Con una exploración bien hecha se pueden tener datos seguros y afirmar rotundamente, de antemano, ya sea el éxito futuro de la explotación o la inconveniencia de abordarla.

Conviene por esto divulgar los conocimientos de la forma cómo se realiza una exploración y tratar de que ésta se haga ajustada a normas fijas, uniformes y prácticas, para contribuir así a despertar la confianza de los que se arriesgan a emprender esta clase de actividades o a emplear sus capitales, y a familiarizarlos sobre la forma de apreciar el resultado de una exploración aurífera.
Tendiente a este fin, el subscripto dispuso se hiciera un informe redactado en lenguaje sencillo, al alcance de todos, de la forma cómo hay que encarar estas exploraciones.

Ese informe ha sido terminado, y al elevarlo a la consideración de V. E. me permito solicitar sea publicado, por estar firmemente convencido de que, con su amplísima difusión, habremos dado un paso adelante en la ejecución de esta clase de trabajos.

Deseos serían de esta Dirección que, como resultado de esta publicación que hoy se solicita, conjuntamente con las que próximamente elevaré a consideración del señor Ministro, podamos ver en un futuro cercano, un enjambre de hombres fuertes y animosos, dedicados a lavar oro, con el excelente resultado, tanto social como económico, que tal clase de trabajos está dando en un país vecino.

Considere, además, conveniente solicitar de V. E. autorización para fijar en $ 0.50 % el precio del folleto, suma que si bien no alcanzaría a cubrir la totalidad de los gastos que demande su impresión, sería equitativa, dado el carácter de la misma y el interés de poder realizar la mayor difusión posible.

Saludo al señor Ministro con mi consideración más distinguida.

TOMÁS M. EZCURRA
Director
Buscador de oro, lavando arenas auríferas

Grabado de la Cía. Werf Conrad.
CAPITULO I

PREFACIO — DATOS HISTORICOS

Desde la más remota antigüedad fue conocido el oro por el hombre, quien, aplicándolo en sus rústicos instrumentos de piedra, lo usó antes de haber comenzado a utilizar el cobre o el hierro.

Veinte siglos antes de la Era cristiana, los chinos ya explotaban el oro, y desde la época de las primeras dinastías faraónicas se empleaba el oro en Egipto.

El modo sencillo cómo puede recogerse este metal, unido a su hermoso color característico, han sido, sin duda, las causas que han determinado que haya sido utilizado antes que otros.

Sencilla ha sido y es la forma de obtener este metal cuando se encuentra en las arenas y gravas que forman los aluviones y placeres auríferos: un simple lavado del material que forma el aluvión o placer, con el objeto de separar las partres livianas (arenas y guijarros) de las partres pesadas (oro), ha constituido siempre el trabajo minero para extraer el oro.

A pesar de los siglos transcurridos desde que se hace esta explotación, en principio la operación se realiza hoy como antes, con medios e instrumentos rudimentarios que están al alcance de cualquier entusiasta que no disponga de más capital que su firme deseo de trabajar y prosperar.

En el libro “De Re Metallica”, publicado por G. Agrícola en el año 1556, puede verse que el lavado de las arenas auríferas y su amalgama-
ción se hacía en esa época como aún se hace actualmente y como la hacían los chinos y los egipcios en la antigüedad.

Es que este trabajo es tan simple que no ha podido reducirse más.

Va sin decirlo que esto es cuando se trata de explotaciones por medios manuales o individuales.

La aplicación del progreso de la mecánica y de la metalurgia a esta actividad del hombre, ha permitido desarrollar la industria aurífera en una magnitud extraordinaria; máquinas hay que realizan trabajos equivalentes al que podrían ejecutar millares de personas; se ha conseguido con ellas explotar terrenos de muy bajo rendimiento.

Posteriormente estos progresos, complementados con procedimientos químicos, han tenido como consecuencia que la explotación del oro haya llegado a adquirir un desarrollo realmente fantástico, alcanzándose a colocar esta industria a la altura e importancia de las más desarrolladas en el mundo; pero, a pesar de ello, no ha eliminado la posibilidad de que prosperen a la par las explotaciones manuales o, individuales.
La industria del oro tomó un auge extraordinario a partir de mediados del siglo XIX.

A partir de esa época, una inmensa actividad, tal que llegó a denominarse "fiebre del oro", se despertó en todo el universo, debido al descubrimiento de grandes círculos de oro en distintas partes del mundo.

En California y otras regions de los Estados Unidos, en Alaska, en los Montes Urales, en Siberia, en China, en Australia, en Nueva Zelanda y en Sud Africa, el descubrimiento de yacimientos auríferos provocó la migración de verdaderas avalanchas humanas a esas regiones, para explotar el precioso metal.

En esas oportunidades se extrajeron cantidades tan enormes de oro, que no ha habido época anterior en la historia de la humanidad en que se haya trabajado con tanta intensidad ni con tanto provecho.

En la época de la conquista de América por los españoles y portugueses, se sacaron grandes cantidades de oro de estas regiones; pero la magnitud de estas extracciones palaidece al compararlas con las cantidades obtenidas a partir de 1840.

Como en toda actividad industrial, en la industria del oro ha habido grandes éxitos y grandes fracasos; momentos álgidos y épocas de decaimiento; ha provocado el florecimiento de regiones enteras, que luego han quedado reducidas a un lúgubre vivir, para luego resurgir nuevamente.

Esto se debe a una característica especial de esta clase de explotaciones.

Descubierta una zona aurífera, la primera racha de explotadores extrae, por lo general, la parte de metal de mayor tamaño y de más fácil obtención; luego llegan otros hombres y explotan con más paciente método lo que los primeros desecharon; luego, una tercera y aun una cuarta explotación de las mismas zonas, han resultado provechosas.

Y cuando el trabajo manual o individual ya no puede sacar ningún provecho de las arenas auríferas, aun queda algo para ser explotado en condiciones económicas, utilizando dragas o medios hidráulicos.

Y como ni con el dragado se consigue extraer todo el oro que los aluviones o placeres pueden contener, queda aún un resto que ya el ingenio del hombre encontrará el método para poderlo recuperar más adelante.

EL ORO EN LA REPÚBLICA ARGENTINA

En tiempos precolombianos, los indios explotaron oro en distintas partes del territorio de la República Argentina.

Durante la conquista y el coloniaje, por sí y utilizando también mano de obra indígena, explotaron los españoles oro en grandes cantidades en distintos sitios de nuestro territorio.

Muchos de los lugares donde se hicieron tales explotaciones se conocen hoy perfectamente por la tradición y por ruinas de las obras que en esos lugares se ejecutaron; pero también muchos lugares han quedado ignorados, principalmente donde trabajaron los jesuitas.

La explotación del oro decayó durante la guerra de la independencia y se anuló casi por completo durante los turbulentos largos años de nuestras guerras civiles e imperio del caudillaje.

En el último tercio del siglo pasado también repercutió en la República Argentina la fiebre del oro; numerosos fueron los exploradores que, ante la perspectiva de fabulosas ganancias, se lanzaron a buscar ricos cia-
deros de oro; muchas compañías se formaron, algunas de las cuales instalaron dragas y otras máquinas para explotar el noble metal.

Infortunadamente, esta industria no alcanzó a tener fructíferos resultados.

Sea porque aquellas compañías se establecieron sin estudios formales y exploraciones previas, sea porque fueron mal administradas, el resultado real fue desgraciadamente, malo en general.

Estudiando las actividades que en esa época se desarrollaron, se llega a la conclusión de que, más que el deseo formal de extraer oro, lo que se efectuó en esos años fue una especulación en gran escala, explotando los entusiasmos colectivos despertados por los éxitos obtenidos en otras partes.

Sin previas y formales exploraciones, es arriesgado iniciar explotaciones de oro en gran escala.

Eso pasó en nuestro país y ocurrirá siempre igual cosa en todas partes en que se procura lo mismo, salvo que por casualidad se descubran extraordinarios yacimientos auríferos cuya explotación fructífera cubra con piadoso manto los errores, imprecisiones, o mala fe que hubiera habido al principio.

Los fracasos ocurridos en la República han tenido por consecuencia disminuir, hasta agotarlo casi por completo, el espíritu minero en nuestra población, y hacer reacio el capital extranjero para interesarlo y hacerlo intervenir en empresas de esta clase.

La prosperidad agrícola y ganadera que tuvimos luego, relegó a último plano todo lo concerniente a asuntos de minería.

Pero hoy comienza a renacer ese espíritu minero en nuestra población. La explotación del petróleo, de las piedras calizas para hacer cemento, del yeso, de los granitos y mármoles, del plomo, de las arenas y arcillas, etcétera, etc., se hacen hoy en nuestro país con tanto interés y entusiasmo que casi llegan a satisfacer las necesidades del mercado interno de la República.

Despertar el interés con datos ciertos, desprovistos de cualquier otro fin que no sea el bien colectivo, por la explotación del oro, es lo que mueve a la Dirección de Minas y Geología de la Nación para publicar estos informes.

Oro en cantidades explotables, con promisores rendimientos, existe en las provincias de Jujuy, Salta, Catamarca, La Rioja, San Juan, Mendoza, San Luis y Córdoba y en los territorios nacionales de Los Andes, Neuquén, Chubut, Santa Cruz y Tierra del Fuego.

Antes de iniciar una explotación de oro, de un aluvión o placer, conviene explorarlo formalmente.

La intensidad de esta previa exploración dependerá de la magnitud de la explotación que se piensa realizar.

Vulgarizar los conocimientos de cómo se hace la exploración de un placer aurífero, es obra patriótica del momento actual.

En las páginas que siguen se hace la descripción de la forma cómo se hace tal exploración.

Se describe, en detalle, una exploración efectuada en Río Blanco, (Famatina, La Rioja), en donde se emplearon los medios más adecuados respondiendo al fin que se proponían (explotar el placer por medio de dragas).

También se describe el procedimiento para hacer tales exploraciones empleando un equipo portátil a mano.
Pero el que quiera hacer una exploración modesta, la podrá realizar por medio de simples pozos hechos a mano, si las condiciones del terreno lo permiten, y los resultados que se obtengan, cualquiera que sea el método empleado, serán ponderables siempre que se sigan las normas generales que se indican más adelante.

CAPITULO II

EXPLORACION Y CUBICACION DE ARENAS METALIFERAS,
DE PLACERES Y ALUVIONES

En los placeres y aluviones pueden encontrarse arenas metalíferas conteniendo oro, plata, platino, estano, diamantes, etcétera.

Los métodos de exploración para comprobar la existencia de cualquiera de esas substancias y para cubricarlas, con el fin de ver si se encuentran en cantidades comercialmente explotables, son semejantes.

En lo que sigue, se tratará el caso especial de exploraciones auríferas; pero, como se indica en el párrafo anterior, es semejante para los otros metales.

Aluviones y placeres. — La acumulación natural de arenas, guijarros, cantos rodados y aun piedras más o menos grandes producidas por la acción del mar, de los ríos y por la denudación de los agentes atmosféricos, en playas, cauces de los ríos o terrazas, forman los placeres y aluviones, los cuales en algunos lugares contienen oro en cantidades comercialmente explotables.

Los placeres y aluviones pueden encontrarse cubiertos de otros materiales o también descubiertos.

Pueden ellos encontrarse cubiertos de basaltos, como los hay muy ricos en el Estado de California, o bien cubiertos con arcillas y humus, como los placeres de Cañada Honda (provincia de San Luis).

Pero también es frecuente que se encuentren descubiertos, como son los placeres de Andacollo (Neuquén) y los de Famatina (La Rioja), etcétera.

Forma y nomenclatura de los placeres. — El terreno sobre el que descansa la aglomeración del placer se denomina “lecho” (bed rock), roca o tosca (esto en sentido minero y no mineral).

El “lecho” está constituido por roca maciza o terreno duro, de mayor cohesión y dureza que el material de que está constituido el placer.

Dentro de la masa del placer pueden encontrarse capas compactas, generalmente cementadas con arcillas, cuya dureza hace creer que se trata del “lecho”; a estas capas se les llama “falso lecho”.

En un placer puede haber uno o más “falsos lechos”.

El oro en los placeres no se encuentra distribuido en una forma uniforme, sino que está en cantidades variables, tanto que se considere en el sentido vertical del perfil, como en el sentido horizontal.

La distribución variable del oro en los placeres débese a las distintas velocidades que ha tenido el agua que lo ha arrastrado y al movimiento sufrido por las gravas que lo contienen, movimiento que ha provocado el descenso del oro debido a su mayor densidad.
En general, la mayor concentración de oro se encuentra desde unos metros sobre el lecho (bed rock) hasta unos centímetros dentro del mismo, o en las grietas que tenga este lecho.

Exploración de los placeres. Cortes abiertos. — Los placeres cubiertos pueden ponerse de manifiesto por algún corte natural del terreno, barrancas de ríos actuales o antiguos o paredes naturales, que permitan ver e identificar los diversos estratos del terreno, o bien por cortes artificiales, como ser: desmontes para un canal, camino o ferrocarril o pozos abiertos a mano.

Pero estos hallazgos son, en general, casuales y sólo sirven, comúnmente, para dar una idea de la existencia del placer, no permitiendo, por lo común, un reconocimiento integral y sistemático para su exploración, eubricación y valuación.

Exploración con pozos. — Donde el terreno es favorable, pueden practicarse pozos hechos a pala y pico y sacar muestras de los terrenos para su análisis.

Para poder practicar pozos de esta clase, es necesario que no haya aguas subterráneas.

La existencia de aguas subterráneas de poco caudal y bajo nivel entorpece la operación de la extracción de las muestras en forma adecuada y uniforme; la existencia de aguas subterráneas abundantes y de alto nivel piezométrico imposibilitan la exploración con pozos hechos a mano.

En el caso especial de que no haya aguas subterráneas, la exploración con pozos debe llevarse en la siguiente forma: hacer la excavación bien vertical y con su sección en forma regular, de modo que para una misma profundidad excavada pueda sacarse un volumen constante de material.

Este material es lavado y, una vez recogido y pesado el oro, puede calcularse fácilmente la cantidad del precioso metal que contiene cada metro cúbico de grava.

Exploración con pozos perforados. — En síntesis, este trabajo consiste en ir hundiendo una cañería e ir sacando metódicamente el material (grava), que es cortado por el zapato y que entra en la cañería.

Ese material, luego es lavado para separarle el oro que contiene, el cual, una vez pesado, nos permitirá calcular la cantidad de oro que contiene cada metro cúbico de grava o arena aurífera.
Proporción entre el material explorado y a explotar. — Si en tal exploración se usa un zapato que tenga 7\(\frac{1}{2}\)" (0.19 m) de diámetro en el filo, ese filo cortará teóricamente un disco de 284 cm\(^2\).

Si por cada hectárea se hace una perforación de exploración, el material sacado con esa perforación será 1/350.000 del material que probablemente contendrá oro.

Se puede decir que la explotación de un placer es una de las operaciones mineras más seguras que se puede concebir, si se decide hacer esa explotación después de un verdadero y metódico sondaje del terreno.

Si ese trabajo ha sido bien hecho, se puede suponer que todo riesgo de pérdida está descartado; la importancia del beneficio que se obtendrá con su explotación dependerá únicamente de la buena adaptación de los métodos de explotación más económicos al placer en cuestión, del examen de las condiciones locales, de la mano de obra, del precio de los transportes y, en fin, del clima.

Los fracasos debidos a la exploración insuficiente o trunca de los aluviones auríferos, antes de instalar los aparatos destinados a su tratamiento, sean o no mecánicos, han sido numerosos, no sólo en países extranjeros, sino en la República Argentina.

Es una tendencia natural del minero de oro estar constantemente inclinado a pensar que las circunstancias desfavorables siempre son para los otros mineros, pero que ellas no han sido hechas para él; en una palabra, es un optimista exagerado en lo que concierne a sus intereses y es pesimista al considerar las posibilidades de sus competidores o adversarios.

Los organizadores de empresas mineras para la explotación de filones de oro, que gastan centenares de miles de pesos para instalar una batería de 20 ó 40 pilones, basados sobre simples muestras superficiales, antes de haber abierto la mina, constituyen una categoría tan numerosa como los explotadores de placeres que confían siempre en su buena estrella.

Ambos tipos de mineros, por lo general, tienen el mismo fin lamentable.

Conviene, para evitar parecidos desastres, seguir, para la cubricación de placeres, un método regular y científico, con el objeto de reducir a un mínimo las sorpresas en la evaluación del contenido, y reservar un coeficiente de seguridad tal, que se esté siempre asegurado de que los resultados que se obtendrán con la explotación serán superiores a los resultados obtenidos con los sondajes.

Es en realidad un vasto muestreo el que uno se propone efectuar, y cuando se reflexiona sobre la proporción realmente ínfima del metal precioso que se trata de poner en evidencia y de determinarlo con exactitud, maravilla la precisión con que se puede establecer cifras de un orden que, por lo general, se considera despreciable con respecto a nuestros medios de apreciación ordinaria.

Por ejemplo, un contenido de un gramo de oro por metro cúbico de aluvión es, en la mayoría de los casos, netamente remunerador.

Un metro cúbico de aluvión pesa, por término medio, 2250 kilogramos en el terreno, viéndose entonces que el peso de la materia útil a determinar en un metro cúbico no es más que 1.250.000 del peso total, es decir, en fracción decimal, 0.000.000.444 del peso del mineral en bruto.

Si se hace la comparación en volumen ¿se alcanza a una relación diez veces menor!
A pesar de esas dificultades, se llega a demostrar, como veremos más adelante, con una seguridad aceptable, la existencia en un cubo determinado de aluvión, de la cantidad de oro que contiene.

En un aluvión, las partículas de oro no se encuentran distribuidas con matemática simetría, y los medios con que nos valemos para estimar la cantidad que existe hemos visto que son de magnitudes muy pequeñas; el volumen del muestreo puede ser de 1/350.000 sobre el volumen a explotar, y, dentro de la muestra obtenida, el oro se encuentra en la proporción de 1/2.250.000 con respecto al peso de la muestra.

Por esto, al hacerse una exploración en un placer, no hay que pretender sacar con meticulosa precisión la medida de la muestra; basta para obtener resultados razonablemente aceptables, que los operadores (perforador, lavador e ingeniero director de los trabajos), tengan ante todo un corriente sentido común y, sobre todo, que haya una gran sinceridad en los datos que suministren.

CAPITULO III

TRABAJOS PARA RECONOCIMIENTO DE PLACERES (*)

GENERALIDADES

El cateo de placeres, por más que se realice con perforadores y en forma algo igual a la apertura de un pozo para agua, constituye, sin embargo, un procedimiento completamente distinto.

Para pozos de agua, el objeto que se persigue es hacer un agujero de conveniente diámetro con la mayor rapidez posible.

Pero en los cateos de placeres, lo que se desea es extraer todo el material de un agujero de diámetro exacto que baja desde el suelo hasta el lecho de roca. Estas materias extraídas representan una muestra que sirve para determinar el valor numeral exacto del placer o gravas.

Los sondeos en placeres se hacen siempre a través de formaciones flojas, blandas o arenosas o de depósitos aluvionales de cascajos, guijarros o cieno, que exige el empleo de tubería para mantener abierto el agujero.

Es, pues, una labor que consiste esencialmente en introducir un tubo, tratando en lo posible de no hacer uso del trépano.

En los pozos para agua, la tubería que se mete está destinada a permanecer en el pozo; además, al meterse el tubo en el pozo, el trépano puede preceder al zapato de la entubación, de modo que éste, al bajar, no encuentra resistencia o encuentra poca.

No sucede lo mismo cuando se efectúa el reconocimiento de un placer; en este caso, el procedimiento consiste de ordinario en meter a la fuerza el tubo en el terreno, de modo que corte, al bajar, una columna continua de diámetro exacto.

Tal método impone el uso de una cañería reforzada, preparada especialmente y en longitudes de dos a tres metros.

Debe tenerse en el campamento una cantidad de cañería — triple más o menos de la cantidad necesaria para alcanzar desde la superficie del

(*) Del catálogo "Keystone", del año 1909, y parte de la forma cómo se trabajó en Río Blanco.
suelo al lecho de roca — como reserva para casos imprevistos o accidente a algún caño o canería completa.

Después de ejecutado cada pozo debe, como medida de economía, recuperarse la entubación que se puso; para poder hacer este trabajo, las cuplas de unión deben ser hechas con suma precisión; también estas cuplas deben ser de suficiente solidez para que puedan resistir los golpes que reciben al meterse el tubo.

Las roscas en los tubos se hacen de modo que los caños, una vez enrosados, cierran al tope.

Como ocurre con frecuencia que las cuplas sufren desperfectos, conviene tener cuplas de repuesto. En general, se tiene una cupla extra por cada tres caños que haya en existencia en el campamento.

Ocurre a menudo que al practicarse el sondeo, se encuentran grandes piedras, trozos de árboles o cascacho cementado. Para poder cruzar fácilmente estos obstáculos, se pone a la canería un fuerte zapato provisto de un filo agudo de acero cortante.

Al cabo de tres, cinco o más pozos que se hagan con el mismo zapato, el filo puede estar más o menos mellado; en tal caso hay que descartarlo o forjarlo de nuevo.

Como la exactitud de la muestra depende de la forma en que el zapato corta el terreno, conviene tener zapatos en buen estado, por lo que el zapato deformado debe descartarse y ponerse en su lugar uno nuevo. Para ello conviene tener en depósito por lo menos cinco zapatos en buen estado.

¿Existe oro (u otro material precioso) en el aluvión que cubre la roca hasta la superficie del terreno? Esto se comprueba lavando los materiales extraídos del pozo.

¿Cuánto oro (u otro material) hay en cada metro cúbico del terreno? Este dato permitirá determinar si habrá provecho en dragarlo o explotarlo en otra forma.

Haciendo bien el trabajo, el zapato puede cortar, y la eucharásia subir una columna redonda y continua de tierra o grava, desde la superficie hasta la roca. El diámetro de esta columna queda determinado por la boca cortante del zapato de acero.

La práctica ha fijado para este zapato un diámetro normal de (7½") 19.05 centímetros. Por lo consiguiente, cada centímetro de profundidad excavado representará 285 centímetros cúbicos de materias, o sea 28.500 centímetros cúbicos por cada metro de profundidad del agujero de ensayo.

Lavado todo el oro u otro metal contenido en la masa extraída del agujero de ensayo, y determinado su valor, se calcula con facilidad el valor de cada metro cúbico de tierra adyacente.

Si se conoce el costo del dragado por metro cúbico, ya se puede determinar inmediatamente si habría ganancia en montar y explotar una draga en ese lugar.

Algunos ingenieros de minas aconsejan cubicar los materiales que se extraen del agujero de ensayo, como base para estimar el valor del terreno. Pero este sistema puede conducir a errores, pues los materiales extraídos del agujero de prueba, una vez mezclados con agua y reposados en un depósito, tienen siempre menos bulto o volumen que el espacio que ocupaban anteriormente en el suelo. En otros términos, si se volvieran al hoyo los materiales de él extraídos, no llenarían la excavación de donde proceden.

Se explica tal fenómeno por el hecho de que la arena y el barro que se mezclan con el agua hacen disminuir el volumen positivo.
Sin embargo, no hay ningún inconveniente en medir el material que se extrae del sondeo con el fin de controlar la marcha del mismo, pudiendo en esta forma comprobar si hay entrada de material en exceso en la cañería (caso de material fluido) o si hay una entrada menor de material (caso en que, con el zapato, se haya encontrado una piedra de regular o gran tamaño).

¿Presenta el terreno condiciones propias para el dragado?
A medida que se vaya hundiendo la cañería, el perforador irá averiguando cuanto se relaciona con las formaciones; si contiene muchas o pocas piedras, si el lecho de roca es blando o duro y si presenta algunas obstrucciones.

¿A qué nivel se encuentra el agua en el terreno sondeado?
Este punto se determina fácilmente observando el nivel piezométrico del agua dentro de la cañería.
Este dato es de suma importancia para poder calcular cómo trabajará la draga.

La presencia del agua no constituye un obstáculo para la ejecución de las perforaciones; al contrario, las facilita.

¿Está el mineral uniformemente distribuido sobre toda el área que se desea explorar o yacen en raspaduras o depósitos las pepitas? ¿Hay raspaduras estériles o sitios tan pobres en oro que no habría provecho en dragarlos?

Claro está que para poder contestar a esta pregunta habrá, quizá, que practicar un buen número de sondeos, acaso uno cada 1000 ó 1200 metros cuadrados, debiendo trazarse un mapa de todo el terreno indicando el punto con cuidado y el resultado de cada ensayo que se haga. Estos datos pueden ahorrar el inútil dragado de terrenos improductivos.

A la vez, el resultado de cada perforación servirá para controlar el resultado obtenido con el dragado.

¿A qué profundidad está la roca?
¿Yace en plano horizontal o inclinado?
Lo determina fácilmente el jefe de sondeo, y debe anotar estos datos muy escrupulosamente para el informe final.

Estos informes le serán muy valiosos cuando quiera fijar el lugar donde comenzará a funcionar la draga; le indicará si el terreno es bastante profundo para la draga o si lo es demasiado, y también el tamaño de draga que convenga construir.

Trasladarse de un lugar a otro siempre es empresa costosa; los datos que se obtengan con las perforaciones pueden prevenir para que luego no se tenga que hacer esas traslaciones.

Casi todas las tierras de dragado tienen sus sitios ricos o canales. Es de la mayor importancia determinar su situación en un mapa, a fin de colocar la draga donde más rendimiento pueda dar y evitar su colocación en terreno estéril.

¿Es el lecho de roca verdadero o falso?
Elle se sabe en seguida perforando la roca al llegar a ella. El equipo para cateos de placeres tiene todos los elementos para ello.

El oro yace generalmente sobre la roca o cerca de ella, al fondo del depósito aluvional. Sucede que hay, a veces, un falso lecho de roca (formado por caseajos cementados o conglomerados) a cierta distancia por encima de la verdadera roca, hallándose el más rico depósito de oro entre ese falso lecho y el verdadero, uno o dos metros más abajo.
Si existe tal falso lecho, es de importancia capital averiguarlo.

¿De qué naturaleza es la roca? ¿Podrán los cubos o cangilones de la draga recoger todo el oro?

Sucedía a menudo que existe sobre la roca un depósito de barro blando, cieno o cenizas volcánicas, encima del cual se halla todo el oro. Esto es muy favorable al dragado. Otras veces, el lecho de roca es escabroso y áspero e imposibilita bajar el cubo suficientemente junto a la roca para recoger todo el oro. El perforador podrá determinar estos puntos y debe anotarlos escrupulosamente en los apuntes correspondientes a cada sondeo. A medida que se introduce el tubo, los materiales que se extraen de cada limpieza deben lavarse cuidadosamente para separar todo el oro que contengan (esta operación debe hacerse como se indicará más adelante).

¿Es el oro grueso o fino?

El oro de aluvión es tan fino algunas veces, que es muy difícil reco-gerlo. Hay que conocer esto con anticipación, con el fin de poder elegir los dispositivos adecuados que se pondrán en la draga con que se explotará el placer aurífero. Por medio de la perforación podrá conocerse la calidad del oro y poder planear la forma cómo se deberá explotar.

REGLAS PARA LLEVAR A CABO CATEOS DE PLACERES

Y RAZONES DE LAS MISMAS

Levantase un plano del terreno que ha de someterse a reconocimiento, clavando estacas numeradas, de modo que quién posteriormente vaya al terreno pueda orientarse fácilmente.

En un reconocimiento preliminar de las gravas que hay en un río, se hacen las perforaciones siguiendo perfiles transversales al río.

Cada perfil transversal podrá efectuarse a 500 metros de distancia uno de otro; en cada perfil se harán perforaciones distantes 25 ó 30 metros una de otra.

Las perforaciones hechas sobre cada perfil se numerarán en forma correlativa, dando el número 1 a la perforación extrema en el lado de la margen derecha del río.

El historial de cada perforación se llevará en un libro y en los corres-
donientes partes diarios (lámina XX).

Además se llevará el "Parte de Perforación" (láminas XVIII y XIX).

Referente a este formulario, indicaré cómo han sido llenados los for-
mularios que se acompañan, los que, como se ve, están con medidas ingle-
sas —pies y pulgadas— a causa de que los ingenieros americanos traba-
jaban en Río Blanco con esas unidades, pero no presentará dificultades el hacer esas anotaciones en el sistema métrico decimal.

Columna de "fecha y hora". — Se colocará el día y el mes una sola vez; debajo se escribirá la hora en que se haya acabado de limpiar el pozo, después de una determinada clavada de caño.

Columna de "profundidades". — Se anotará la profundidad hasta donde se haya clavado los caños.

Columna de "tamaño de las pepitas". — En los formularios (lámi-
inas XVIII y XIX) se han adoptado las siguientes abreviaciones:

Por ejemplo: 4 M. M. F., significa que se han encontrado cuatro pepitas muy muy finas.

Columna de “peso de las pepitas”. — Se indicará en miligramos el peso de las pepitas encontradas, peso estimado a ojo.

El que sea experto en esta clase de exploraciones llega a adquirir cierta habilidad para poder apreciar a ojo el peso de las pepitas.

Columna de “Testigo (volumen)”. — Se indicará el volumen de la muestra de tierra sacada; ésta se mide después de haber lavado la grava o arena. Este dato se toma con el fin de ver si la cantidad de muestra sacada corresponde a la profundidad a que se han clavado los caños.

Columna de “Testigo (antes de bombear)”. — Se indica en esta columna la altura que tiene el testigo, dentro de la cañería, antes de ser extraído por la cuchara o removido con el trépano.

Columna de “Testigo (después de bombear)”. — Se indicará en esta columna la cantidad de testigo que queda dentro de la cañería después de haber sacado el relleno.

Columna de “Muestra de los terrenos”. — Se indicará brevemente la naturaleza de los terrenos cruzados.

Columna de “Observaciones”. — Se indicará en esta columna todas las novedades ocurridas durante la perforación, como ser: no se sacó muestra; fácil para clavar los caños; hubo entrada excesiva de relleno en la cañería; fácil para perforar; se encontraron grandes piedras, etc.; datos que puedan indicar claramente la naturaleza del terreno cruzado.

FORMA DE HACER UNA PERFORACION DE EXPLORACION AURIFERA CON MAQUINA A CABLE

A continuación indicaré cómo se efectúan las perforaciones para obtener las muestras que han de servir para hacer el lavado y obtener el oro.

Si se sabe de antemano que en el lugar donde se va a hacer la perforación no existe oro en una profundidad de 0.25 a 0.50 m., como ocurre frecuentemente, se procede a excavar por medio de pala y pico hasta esas profundidades.

En el agujero abierto se introduce a plomo y se sujeta provisionalmente un caño de dos a tres metros de largo, con un zapato bien atornillado en el extremo inferior y una cabeza golpeadora en el extremo superior. Luego este caño se calza exteriormente, para que quede bien firme. Después se marca con tiza, sobre este caño, distancias a 305 mm. (un pie), a partir del filo del zapato (ver lámina IV, 2). Como herramienta para trabajar, se usarán el trépano y la barra maestra. En el cuadrado del trépano se coloca la grampa golpeadora, firmemente atornillada.

Se inicia la hincada de la cañería, golpeándola con la grampa. Como al iniciar los trabajos la barra maestra queda fuera de la cañería, suele ocurrir que, al comenzar a golpear, ésta se mueve de un lado para otro; para evitar esto se suele usar un dispositivo especial colocado en la cabria de la máquina (guias Conyne para herramientas u otro dispositivo semejante), o bien se hace trepar al ayudante en la cabria y que éste guíe a mano la barra maestra (como puede verse en la lámina V, 1).
Una vez que la cañería ha penetrado en el suelo 0.30 ó 0.60 m. (uno o dos pies), se suspende la hincada de la cañería, se saca la herramienta y se destornilla la grampa golpeadora.

Hecho esto, se baja el trépano hasta el fondo del pozo con el fin de medir la cantidad de terreno que ha entrado en la cañería, midiendo desde el filo del zapato (dado que se anota en la columna correspondiente del “Parte de perforación”).

Luego se echan unos 50 litros de agua en el pozo y se baja la cuchara pistón, con el fin de tratar de extraer el terreno que ha entrado en la cañería.

Esta operación con la cuchara pistón se hace en la siguiente forma:

Se hace asentar el zapato de la cuchara sobre el relleno, y luego se hace descender el pistón hasta el fondo, y después se afloja unos dos metros del cable de cuchareo.

En seguida se pone en marcha el tambor de cuchareo, en forma violenta, de modo que el pistón suba con fuerza dentro de la cuchara.

Este movimiento brusco del pistón produce un vacío, el que provoca la entrada del relleno en la cuchara.

Sabiendo maniobrar, es suficiente una de estas operaciones para llenar la cuchara.

Pero si no se llena la cuchara con esta primera carrera del pistón, se vuelve a repetir la operación dos o tres veces sin sacar la bomba pistón del pozo.

Puede ocurrir que, por haberse trabado la válvula de la bomba pistón con una piedra, no se llene la bomba, lo que se observará por bajar el pistón hasta el fondo de la bomba; en ese caso es inútil insistir en llenar la bomba; lo mejor es sacarla para arreglar la válvula.

A medida que se va retirando la bomba, es necesario echar agua al pozo de modo que se lave el cable, con el fin de que si alguna partícula de oro está adherida al cable, se desprenda y caiga al pozo; en la misma forma debe lavarse el exterior de la bomba cuando ésta llega a la boca del pozo (ver lámina VI, 1).

Se saca la cuchara y se vuelca su contenido en el canal de madera (ver lámina VI, 1).

El material que se vuelve en el canal cae en el fuentón o tacho de hierro galvanizado.

Estando la bomba en el caballet del canal de madera, se procede a lavarla bien; para esto, se echa agua por el lado de la válvula, luego se da media vuelta a la cuchara o bomba y se vuelve a echar agua por la parte de la válvula; después se vierte agua en la parte superior de la cuchara con el fin de lavar el pistón de la bomba. El agua se echa mediante unas cacerolas de hierro galvanizado.

La cuchara tiene que ser limpiada perfectamente, con el fin de que no quede adherida a ella ninguna partícula de oro.

Como se comprende, toda el agua de este lavado debe caer dentro del canal de madera.

Terminada esta operación, se vuelve a bajar la cuchara, con el fin de continuar con la extracción del relleno que hay en el pozo.

Se repite la operación con la cuchara, hasta que en el pozo quede un relleno de 0.05 a 0.10 m. (2 ó 4 pulgadas).

Después se baja el trépano, con el fin de medir el relleno que ha quedado en el pozo. Esta medida se anota en el “Parte de perforación”, en la columna correspondiente.
La forma cómo se hizo en Río Blanco para medir la cantidad de relleno que había en el pozo, antes y después de bombar, fué: marcar en el cable de perforar, con una filástica, una longitud, medida desde el filo del trépano, igual al largo total de la columna de entubación (zapato, caños, cabeza golpeadora).

De modo que si la marca quedaba, una vez asentado el trépano en el fondo, 0,30 m. sobre la parte superior de la cabeza golpeadora, esto indicaba que el relleno que había dentro de la cañería era de 0,30 m. a partir del filo del zapato.

Debo observar que al comenzarse a trabajar por la mañana, el cable de perforar, encontrándose seco, era un poco más largo que después de que se había iniciado el trabajo y se había mojado. Por esta razón, después que se encontraba el cabo mojado, se rectificaba la medida.

Con personal práctico, la medida del relleno puede hacerse siguiendo un método semejante, pero empleando la cuechara pistón o bomba de arena y el cable de acero de la misma.

Pero cuando se trabaja con ésta, hay que tener mucho cuidado, pues es fácil obtener resultados erróneos debido a que el pistón puede bajar, aunque sea unos pocos centímetros, sin que de ello se dé cuenta el jefe de sondeo.

Medida la cantidad de relleno que queda en el pozo después de bombar, se retira el trépano, lavando cuidadosamente el cabo y luego la herramienta, por si trajese adherida alguna partícula de oro.

Una vez la herramienta en la boca del pozo, se le coloca nuevamente la grampa golpeadora y se vuelve a hincar 0,30 ó 0,60 m. la cañería en la misma forma descripta anteriormente, y así de seguido.

La cañería se hincia cada vez 0,30 ó 0,60 m., según sea el terreno que se perfora, las dificultades que se presentan, la cantidad de oro que tengan las gravas, etc. No se pueden dar reglas que fijen a qué profundidad debe hincarse cada vez; esto lo resolverá el director de los trabajos de acuerdo a su criterio.

Siempre hay que tratar de clavar la cañería sin perforar el terreno delante de la misma, con el fin de tener una muestra de una medida exacta (cortada por el filo del zapato).

Puede ocurrir que la cañería, al ser hincada, encuentre una piedra en su camino; pero el zapato que se usa puede romper o desviar esas piedras, si ellas son chicas; tratándose de piedras grandes, algunas veces no pueden ser desviadas por el zapato.

En tal caso, hay que romper las piedras usando el trépano.

Puede suceder que el terreno sea muy compacto o cementado y que por eso no se consiga hacer bajar la columna a fuerza de golpes. En estas circunstancias se procede en la siguiente forma: se perfora con el trépano 0,30 ó 0,60 m. debajo del filo del zapato y luego se hace bajar la columna a fuerza de golpes.

Conseguido esto, se espera un momento para que se asiente el relleno y luego se mide la cantidad que ha entrado dentro de la cañería, en la forma en que se ha indicado anteriormente. Si se hace esta operación, hay que hacerlo constar en el “Parte de perforación”.

Medido el relleno, se extrae el mismo en la forma indicada anteriormente.

En esta clase de trabajos, se recomienda muy especialmente tratar siempre de no perforar con el trépano debajo del zapato.
Se debe evitar en lo posible perforar debajo del zapato, pues ejecutando esta operación no se tiene la seguridad de que algunas piedras no hayan sido desplazadas hacia fuera, o que el pozo que se hace sea mayor que el diámetro del filo cortante del zapato, o que al batirse el material perforado, el oro que él contenga no quede incrustado en las paredes de la perforación, o que el terreno sea desmoronable y se obtenga una muestra mayor que la que hubiera cortado el filo del zapato.

En esos casos, las muestras serían mayores o menores que las que realmente corresponderían, y como eso no se puede verificar, los porcentajes de oro que se obtengan de las muestras sacadas no serán correctos ni exactos.

Por todo ello, se insiste en que se trate de evitar en lo posible el perforar debajo del zapato.

Otra cosa que hay que tener muy en cuenta es el nivel del agua en la cañería, mientras se trabaja.

Si el nivel del agua que hay en la cañería es muy alto con relación al nivel piezométrico de la capa de agua que se cruza con la perforación, habrá la tendencia de que la muestra de terrenos que está en la cañería, salga fuera de ella; si, por el contrario, el nivel del agua que está dentro de la cañería es mucho menor que el nivel piezométrico de la citada capa de agua, habrá la tendencia de que entre mayor cantidad de testigos que la debida.

Por todo esto, es necesario mantener en el pozo una presión hidrostática tal, que no haya tendencia a que entre mayor o menor cantidad de testigos que la normal. Se acepta que para que entre en la cañería la cantidad correspondiente de testigo, es necesario tener el agua en la cañería sesenta centímetros sobre el nivel piezométrico de la capa de agua que se cruze.

Una precaución que hay que tomar, es tratar de que en la cañería de entubación o en las herramientas no haya grasa ni aceite, para que las partículas de oro no se queden pegadas a ella.

Hay que engrasar la máquina de modo que no caiga aceite o grasa en el cable de perforar y sobre las herramientas.

Las cañerías y sus accesorios deben enroscarse sin usar grasa ni aceite; si las roscas andan duras, podrá usarse un poco de grafito con agua.

En los trabajos de exploraciones auríferas se usan dos clases de trépanos: uno del tipo común para romper rocas (de filo chato) y otro de cuerpo delgado, para remover el relleno dentro de la cañería.

En general el relleno puede sacarse usando solamente la bomba de arena, como he indicado anteriormente; pero algunas veces el terreno es cementado y no se puede sacar directamente con el solo uso de la bomba de arena; en este caso se emplea el trépano. Pero se aconseja tratar de usar lo menos posible el trépano.

He indicado anteriormente que la bomba pistón se vuelve en el canal de madera. El plano del canal de madera se indica en la lámina XVII. No es necesario que el canal sea exactamente de las medidas que se indican; puede él variar, de acuerdo con los elementos que se tengan a mano. El que se usó en Río Blanco fué hecho con un canal existente allí.

La perforación se lleva hasta encontrar el bed-rock o lecho. Conviene siempre tratar de penetrar en el bed-rock un metro más o menos,
para estudiar detenidamente la calidad del bed-rock, pues si éste tiene fisuras o rajaduras, en ellas se suele acumular buena cantidad de oro.

En un pozo de cada línea, conviene profundizar más aun con el fin de explorar lo que hay debajo del bed-rock.

Las más grandes dragas modernas sólo pueden dragar hasta 100 pies de profundidad (30 metros), por lo que, en general, las perforaciones no se llevan a mayor profundidad.

Terminada una perforación, por haberse alcanzado la profundidad máxima prefijada, antes de dar por finiquitados los trabajos se tira dentro del pozo 4 ó 5 municiones de plomo de tamaño mediano o una moneda de 5 ó 10 centavos y se baja la bomba pistón. Si la bomba pistón saca las municiones o las monedas eso indicará que el fondo del pozo está bien limpio y no queda en él ninguna partícula de oro.

Otros aconsejan bajar luego una campana impresora, con cera en su parte inferior, por medio de la cual se puede extraer el oro que haya quedado en el fondo del pozo. Después se procede a extraer la columna.

Para ejecutar esta operación, se comienza por mover la cañería con gatos y, una vez que ella esté en movimiento, se puede usar el percusor o barra maestra con masa extractor de tubos (Pipe-Pulling Jar y Knocking-Head).

Una vez terminada cada perforación y sacada la cañería, conviene dejar en el lugar donde se ha hecho la perforación una estaca numerada, con el fin de que en cualquier momento pueda reconociérsela el lugar donde se ha hecho la perforación.

LAVADO DE LAS ARENAS Y GRAVAS EN EL "ROCKER"

Después que se ha sacado la bomba pistón del canal de madera, se lava bien el canal de madera, de modo que no quede nada de arena ni ninguna partícula de oro, usándose abundante agua. Todo el material va a caer al fuentón de hierro galvanizado.

Si durante estas operaciones un fuentón se llena, se coloca otro, tratando de que no caiga nada de agua al suelo.

El material de aluvión o grava aurífera que se tiene en el fuentón, se lava luego en el rocker.

El rocker tiene las medidas generales que se indican en la lám. XVI. El objeto de este aparato es separar todo el material grueso y parte del mediano que constituye la muestra sacada. Además, sirve para lavar la parte gruesa del material y sacarle el oro que pueda tener adherido.

Una primera separación se hace mediante el colador de chapa agujereada. Sobre esta chapa se echa primero el material, usándose para ello una olla, como puede verse en la lám. VI, 2. Una vez el material sobre la chapa agujereada, se le echa agua y se hamaca a la vez el rocker. El material que es muy grueso y que no pasa a través del colador, se echa directamente en el fuentón que está a la salida del rocker, después de lavado. Una vez que se ha terminado de echar todo el material, se continúa echando agua y moviendo el rocker, con el fin de separar el material liviano.

A medida que se hace esta operación, el material se va acumulando en los travesaños que se han colocado en el fondo del rocker. El material
ahí acumulado se revuelve con un palo, a medida que se balancea el
rocker.

Trabajando en esta forma, se consigue reducir el material que
queda en los travesaños a la parte más pesada de la muestra, la que
contiene el oro del aluvión.

Después se levantan los travesaños y todo el material por ellos rete-
nido se hace caer en la batea o plato americano.

Hay que tratar de que todo el material sea recogido por esta batea,
y después se tiene la precaución de lavar bien todas las partes del
rocker para que no quede ninguna partícula de oro.

LAVADO DE LAS ARENAS AURIFERAS CON "PLATOS" O "BATEAS"

La siguiente operación consiste en lavar la muestra en la batea o
plato y recoger las partículas de oro.

La batea consiste esencialmente en un Plato de madera o de hierro
que se llena con aluvión aurífero; puesta en un recipiente con agua o
debajo de una corriente de agua, se le imprime un movimiento girar-
torio, de modo de separar las partes livianas y concentrar en el fondo
el oro y las partes pesadas.

La parte liviana de material que quede en la superficie, se saca de
la batea haciendo con ella un pequeño movimiento de vaivén.

Esta operación que acabo de describir en términos generales, es
más fácil realizarla que explicarla.

Algunos tratados sobre lavado de terrenos auríferos, dedican a
esta operación una larga descripción, con el objeto de que se aprenda
uso de la batea para obtener buenos resultados; pero creo que esas expli-
caciones son inútiles, pues a pesar de tratarse de una maniobra simple,
no es tan sencillo explicarla. Creo que la mejor forma de aprender a
usar la batea es ensayando.

Las bateas que se emplean tienen distintas formas, según sea el país
que se usan, pero en general pueden reducirse a cuatro tipos bien
distintos: Plata Americano, Batea Siberiana, Porúna y Batea cónica.

En la lám. XV se indica un croquis de cada una de estas bateas.

El plato es muy usado en Norte América y en Australia, y es el que
se usó durante la ejecución de los trabajos en Río Blanco (1).

Este instrumento es un plato de hierro negro, sin estar, presentando
un reborde de ocho centímetros de altura, en el cual se concentra
la parte pesada de material, por una serie de movimientos oscilatorios,
alrededor de un eje horizontal, formado por las dos manos que sostienen
el plato, y al mismo tiempo se inclina el mismo hacia fuera con el fin
de eliminar las partículas livianas.

Las partes pesadas se van concentrando en el ángulo que forma el
fondo y la pared del plato.

Después que se ha sacado todo el material liviano, quedan sólo en
el fondo las partes pesadas, constituidas por óxido de hierro (fierrillo),
granates y otros materiales pesados.

A esta altura del trabajo, se puede comenzar a juzgar el contenido
de oro que tiene la muestra tratada, pues aparecen las pepitas de oro
en los bordes de la masa que queda en el fondo del plato; esas pepitas

(1) No teniendo un Plato Americano puede usarse una sartén común.
de oro son las que, justamente, los americanos llaman “color”, pues se destacan sobre el fondo negro u obscuro de los otros materiales o del plato.

Cuando el explorador es práctico, con sólo ver cuántos “colores” aparecen en el fondo del plato en ese momento, puede, sin hacer pesada de ninguna clase, conocer el tenor de oro del aluvión que ensaya, a pesar de la gran cantidad de material no aurífero que aún contiene el plato.

Para separar aún más el oro de esos materiales, se pasa el residuo a otro plato más chico, de unos 15 centímetros de diámetro, donde, operando en forma semejante a la descripta para el plato grande, se procede a reducir la muestra.

Después se extiende este último residuo sobre el fondo del plato chico, y se echa una gota de mercurio, la que se hace correr sobre el fondo del plato, de modo que pase sobre las pepitas. Al pasar la gota de mercurio sobre cada pepita, ésta es absorbida por el mercurio. En esta forma se recogen todas las pepitas o “colores” que ha contenido la muestra lavada.

El fenómeno que pasa cuando la gota de mercurio toma las partículas de oro, se explica en la siguiente forma: la densidad del mercurio es aproximadamente de 13 y la del oro es algo superior a 19, es decir, que el mercurio es más liviano que el oro, mientras que todos los otros materiales que ordinariamente quedan en el plato, son de densidad menor que el mercurio, por lo que flotan sobre la superficie del mismo.

La gota de mercurio con las pepitas de oro se guarda, para separar el oro que contiene, en la forma que indicaré más adelante.

Poruña

Como este instrumento es muy usado en la República Argentina, haré una pequeña descripción del mismo (lám. XV. 4).

Está constituido por un trozo de cuerno de buey, que tiene la forma de una pequeña curva alargada, de 15 centímetros de largo y unos seis a siete centímetros de ancho.

Mediante este pequeño objeto los cateadores llegan, operando con cantidades pequeñas de material que en él colocan, a determinar, con una exactitud sorprendente, el contenido de oro que hay en un aluvión.

Se opera con la poruña imprimiendo un movimiento de vaivén al agua que se ha echado en ella y haciéndose la evacuación de los cuerpos extraños con suma precaución para que no arrastren las partículas de oro. Después se echa en ella la gota de mercurio en la forma descripta anteriormente (lám. IX, 2).

Después que se ha sacado el material que queda en los travesaños colocados en el fondo del rocker, se procede a medir volumétricamente el material sacado durante el bombeo y que ha sido lavado, y ese dato se anota en el “Parte de perforación”.

Ese material se encuentra contenido, al final del lavado, en el fuentón colocado en la descarga del rocker.

Para medir ese residuo, se usa un cajón de medidas determinadas. El cajón que se usó en Río Blanco tenía 305 × 305 × 305 mm., abierto en su parte superior. Si se trabaja con medidas métricas, puede usarse un cajón de 250 × 250 × 250 mm.

Estas medidas del residuo del lavado, dan una idea de la cantidad de muestra sacada, y por ella puede comprobarse si hubo una entrada excesiva o defectuosa de relleno en la cañería.
ENSAYO DEL ORO

La parte final del ensayo consiste en separar el oro que contiene la gota de mercurio.

Para esto hay que disponer de los elementos necesarios para hacer los trabajos químicos y pesadas necesarias. En la lám. VIII, 1, puede verse el laboratorio que se tuvo en Río Blanco.

TRATAMIENTO DE LA AMALGAMA

Se pone la gota de mercurio en un tubo de ensayo y se lava bien con agua destilada. Luego se coloca en un pequeño crisol de porcelana y ahí se echa una mezcla de una parte de agua destilada y una parte de ácido nítrico químicamente puro (d = 1.42). Se coloca el crisol sobre la tela metálica que está sobre el trípode (ver lám. VIII, 1) y se calienta con la llama de alcohol. Al principio se calienta lentamente y luego se eleva gradualmente la temperatura, hasta que la solución de ácido nítrico disuelve el mercurio. Las pepitas de oro quedan en el fondo del crisol, en forma de pedacitos de color negro. Luego se deja enfriar lentamente el crisol, se tira la solución, y el oro que queda en el fondo se lava repetidamente con agua destilada. Una vez bien limpio el oro, se tira toda el agua y se calienta nuevamente el crisol. Cuando el crisol está bien seco, se hace juntar todo el oro en un costado del fondo del crisol y esa parte del crisol se calienta con el soplete.

Al calentarse el crisol con el soplete, el oro cambia de color; de negro u obscuro que estaba toma el color oro natural. Luego se deja enfriar el crisol y ya se puede sacar el oro obtenido.

Ese oro obtenido se pesa con cuidado en la balanza, y se tiene el peso, en miligramos, del oro que contenía la muestra de grava o aluvión sacado de la perforación.

FINENZA DEL ORO

El oro que se encuentra en los placeres no es absolutamente puro; contiene, en general, un porcentaje de impurezas.

Para determinar la cantidad de oro fino que tiene la muestra de oro sacada, es necesario un análisis químico que no se puede hacer en el campamento, por cuya razón, en general, no se hace ese análisis.

Para los cálculos de la riqueza de un placer, puede tomarse, como primera aproximación, un valor fijo para el oro. En general se toma como valor del oro de estos placeres, a razón de 600 dólares americanos el kilogramo.

Un miligramo de oro valdrá 0,06 de centavo de dólar.
Una onza de 480 granos de 64,8 miligramos por grano, valdrá 18,66 dólares (1 onza = 31,1 gr.).

CALCULO DEL ORO CONTENIDO POR CADA YARDA CÚBICA

He dicho anteriormente que el filo cortante del zapato tiene un diámetro de 7 ½ pulgadas; teóricamente corta un cilindro que para cada pie de altura tendrá 0,3068 pie cúbico.
Si ese volumen contiene un miligramo de oro, una yarda cúbica producirá: $\frac{27}{0,3068} = 88$ miligramos, que a razón de 0,06 centavos de dólar el miligramo, tendrá $0,06 \times 88 = 5,280$ centavos de dólar por yarda cúbica de material del placer.

Tomando:

- $0,3068$ como área de la circunferencia de la parte cortante del zapato;
- 27 número de pies cúbicos que tiene una yarda cúbica;
- $0,06$ valor en centavos de dólar el miligramo de oro;
- “d” profundidad total en pies de la perforación;
- $mg.$ número de miligramos de oro sacado de toda la perforación, se tendrá el siguiente resultado:

$$\frac{27 \times 0,06}{0,3068 \times \text{“d”}} \times mg. = \text{valor en centavos de dólar, del oro contenido en el placer por yarda cúbica.}$$

Factor 0,3068: Este factor es válido si el volumen de la muestra sacada equivale exactamente a la superficie cortada por el filo del zapato. En general no ocurre así; la muestra que entra al zapato es menor o mayor que la teórica. Por eso se usan generalmente otros factores, deducidos de la práctica.

Usando el factor 0,3333, se tiene un valor 8,7 % menor que usando el coeficiente 0,3068.

Usando el valor 0,27 (es decir, que para cada 100 pies de perforación debe sacarse una yarda cónica de muestra), se obtiene un valor mayor que cuando se usa 0,3068. La práctica ha demostrado que los valores que se obtienen usando el factor 0,27 coinciden con los resultados que se obtienen con el dragado. En el cálculo que se hizo de las gravas de Río Blanco, se usó el coeficiente 0,27.

Obtenido el valor por yarda cónica, se puede obtener el valor del oro por metro cúbico, multiplicando por el factor 1,3080, como se indica en los “Partes de perforación”.

CALCULO DEL ORO CONTENIDO EN CADA METRO CÚBICO

Trabajando con medidas métricas, podrían usarse las siguientes nomenclaturas:

Para el cálculo de los factores métricos procederemos en la siguiente forma:

Factor 0,3333 (mayor entrada) de testigo es igual al factor normal 0,3068 más un 8,64 %; factor normal 0,3068.

Factor 0,2700 (menor entrada) de testigo es igual al factor normal 0,3068 menos un 12 %.

Siendo el diámetro del zapato 19,05 cm., el volumen del cilindro que tiene por base el diámetro del zapato y por altura un metro, será de 0,028500 m3, que podemos considerar como factor normal, se tendrá:

$$Q_1 = \text{factor para mayor entrada de testigo} \times 0,028500 \text{ m}^3 = 0,030962 \text{ m}^3.$$

$$Q_2 = \text{factor normal} \times 0,028500 \text{ m}^3 = 0,028500 \text{ m}^3.$$
\(Q_3 = \text{factor para menor entrada de testigo } 0,028500 \text{ m}^3. \)
menos 0,12 \(\times \) 0,028500 \(\text{m}^3. \) \(= 0,025080 \text{ m}^3. \)

La fórmula a emplear será:

\[1 \times 0,06 \]
\[\frac{Q \times L}{mg.} \] \(= \) valor en centavos de dólar americano del oro contenido por cada metro cúbico de aluvión, en donde:

0,06 \(= \) precio del miligramo de oro en centavos de dólar americano (600 dólares el kilogramo);

\(Q \) \(= \) factor (\(Q_1 \) o \(Q_2 \) o \(Q_3 \)) de entrada de testigo;

\(L \) \(= \) profundidad total en metros del pozo de donde se ha sacado la muestra de oro;

mg. \(= \) miligramos de oro sacado de las muestras obtenidas de la perforación.

Tomando cada uno de los valores \(Q_1 \) o \(Q_2 \) o \(Q_3 \) calculados anteriormente, se puede calcular tablas que den el cociente \[1 \times 0,06 \]
\[\frac{Q \times L}{mg.} \] igual a un factor \(A \), para profundidades de 0,25 m. en 0,25 m., factor \(A \), que multiplicado por la cantidad de oro en miligramos sacado de la perforación, dará la cantidad de oro que hay por metro cúbico del placer o aluvión que se explora.

En las hojas siguientes se dan las tablas del factor “\(A \)”.

FACTOR “A” PARA \(Q = 0,025080 \text{ m}^3. \)

<table>
<thead>
<tr>
<th>Profundidad</th>
<th>(A)</th>
<th>Profundidad</th>
<th>(A)</th>
<th>Profundidad</th>
<th>(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25</td>
<td>9,5693</td>
<td>10,25</td>
<td>0,2333</td>
<td>20,25</td>
<td>0,1181</td>
</tr>
<tr>
<td>0,50</td>
<td>4,7846</td>
<td>10,50</td>
<td>0,2278</td>
<td>20,50</td>
<td>0,1166</td>
</tr>
<tr>
<td>0,75</td>
<td>3,1897</td>
<td>10,75</td>
<td>0,2225</td>
<td>20,75</td>
<td>0,1152</td>
</tr>
<tr>
<td>1,00</td>
<td>2,9923</td>
<td>11,00</td>
<td>0,2174</td>
<td>21,00</td>
<td>0,1139</td>
</tr>
<tr>
<td>1,25</td>
<td>1,9138</td>
<td>11,25</td>
<td>0,2126</td>
<td>21,25</td>
<td>0,1125</td>
</tr>
<tr>
<td>1,50</td>
<td>1,3948</td>
<td>11,50</td>
<td>0,2080</td>
<td>21,50</td>
<td>0,1112</td>
</tr>
<tr>
<td>1,75</td>
<td>1,3670</td>
<td>11,75</td>
<td>0,2036</td>
<td>21,75</td>
<td>0,1099</td>
</tr>
<tr>
<td>2,00</td>
<td>1,1961</td>
<td>12,00</td>
<td>0,1993</td>
<td>22,00</td>
<td>0,1086</td>
</tr>
<tr>
<td>2,25</td>
<td>1,0632</td>
<td>12,25</td>
<td>0,1952</td>
<td>22,25</td>
<td>0,1075</td>
</tr>
<tr>
<td>2,50</td>
<td>0,9569</td>
<td>12,50</td>
<td>0,1913</td>
<td>22,50</td>
<td>0,1063</td>
</tr>
<tr>
<td>2,75</td>
<td>0,8699</td>
<td>12,75</td>
<td>0,1876</td>
<td>22,75</td>
<td>0,1051</td>
</tr>
<tr>
<td>3,00</td>
<td>0,7974</td>
<td>13,00</td>
<td>0,1840</td>
<td>23,00</td>
<td>0,1040</td>
</tr>
<tr>
<td>3,25</td>
<td>0,7361</td>
<td>13,25</td>
<td>0,1805</td>
<td>23,25</td>
<td>0,1028</td>
</tr>
<tr>
<td>3,50</td>
<td>0,6835</td>
<td>13,50</td>
<td>0,1772</td>
<td>23,50</td>
<td>0,1018</td>
</tr>
<tr>
<td>3,75</td>
<td>0,6379</td>
<td>13,75</td>
<td>0,1739</td>
<td>23,75</td>
<td>0,1007</td>
</tr>
<tr>
<td>4,00</td>
<td>0,5980</td>
<td>14,00</td>
<td>0,1708</td>
<td>24,00</td>
<td>0,0996</td>
</tr>
<tr>
<td>4,25</td>
<td>0,5629</td>
<td>14,25</td>
<td>0,1678</td>
<td>24,25</td>
<td>0,0986</td>
</tr>
<tr>
<td>4,50</td>
<td>0,5316</td>
<td>14,50</td>
<td>0,1649</td>
<td>24,50</td>
<td>0,0976</td>
</tr>
<tr>
<td>4,75</td>
<td>0,5036</td>
<td>14,75</td>
<td>0,1621</td>
<td>24,75</td>
<td>0,0966</td>
</tr>
<tr>
<td>5,00</td>
<td>0,4784</td>
<td>15,00</td>
<td>0,1594</td>
<td>25,00</td>
<td>0,0956</td>
</tr>
<tr>
<td>5,25</td>
<td>0,4536</td>
<td>15,25</td>
<td>0,1568</td>
<td>25,25</td>
<td>0,0947</td>
</tr>
<tr>
<td>5,50</td>
<td>0,4349</td>
<td>15,50</td>
<td>0,1543</td>
<td>25,50</td>
<td>0,0938</td>
</tr>
<tr>
<td>5,75</td>
<td>0,4160</td>
<td>15,75</td>
<td>0,1518</td>
<td>25,75</td>
<td>0,0929</td>
</tr>
<tr>
<td>6,00</td>
<td>0,3987</td>
<td>16,00</td>
<td>0,1495</td>
<td>26,00</td>
<td>0,0920</td>
</tr>
</tbody>
</table>
EXPLORACIÓN DE PLACERES AURÍFEROS

<table>
<thead>
<tr>
<th>Profundidad</th>
<th>A</th>
<th>Profundidad</th>
<th>A</th>
<th>Profundidad</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,25</td>
<td>0,3827</td>
<td>16,25</td>
<td>0,1462</td>
<td>26,25</td>
<td>0,0911</td>
</tr>
<tr>
<td>6,50</td>
<td>0,3680</td>
<td>16,50</td>
<td>0,1449</td>
<td>26,50</td>
<td>0,0902</td>
</tr>
<tr>
<td>6,75</td>
<td>0,3544</td>
<td>16,75</td>
<td>0,1428</td>
<td>26,75</td>
<td>0,0894</td>
</tr>
<tr>
<td>7,00</td>
<td>0,3417</td>
<td>17,00</td>
<td>0,1407</td>
<td>27,00</td>
<td>0,0886</td>
</tr>
<tr>
<td>7,25</td>
<td>0,3299</td>
<td>17,25</td>
<td>0,1386</td>
<td>27,25</td>
<td>0,0877</td>
</tr>
<tr>
<td>7,50</td>
<td>0,3189</td>
<td>17,50</td>
<td>0,1367</td>
<td>27,50</td>
<td>0,0869</td>
</tr>
<tr>
<td>7,75</td>
<td>0,3086</td>
<td>17,75</td>
<td>0,1347</td>
<td>27,75</td>
<td>0,0862</td>
</tr>
<tr>
<td>8,00</td>
<td>0,2990</td>
<td>18,00</td>
<td>0,1329</td>
<td>28,00</td>
<td>0,0854</td>
</tr>
<tr>
<td>8,25</td>
<td>0,2899</td>
<td>18,25</td>
<td>0,1310</td>
<td>28,25</td>
<td>0,0846</td>
</tr>
<tr>
<td>8,50</td>
<td>0,2814</td>
<td>18,50</td>
<td>0,1293</td>
<td>28,50</td>
<td>0,0839</td>
</tr>
<tr>
<td>8,75</td>
<td>0,2734</td>
<td>18,75</td>
<td>0,1275</td>
<td>28,75</td>
<td>0,0832</td>
</tr>
<tr>
<td>9,00</td>
<td>0,2658</td>
<td>19,00</td>
<td>0,1259</td>
<td>29,00</td>
<td>0,0824</td>
</tr>
<tr>
<td>9,25</td>
<td>0,2586</td>
<td>19,25</td>
<td>0,1242</td>
<td>29,25</td>
<td>0,0817</td>
</tr>
<tr>
<td>9,50</td>
<td>0,2518</td>
<td>19,50</td>
<td>0,1226</td>
<td>29,50</td>
<td>0,0810</td>
</tr>
<tr>
<td>9,75</td>
<td>0,2453</td>
<td>19,75</td>
<td>0,1211</td>
<td>29,75</td>
<td>0,0804</td>
</tr>
<tr>
<td>10,00</td>
<td>0,2392</td>
<td>20,00</td>
<td>0,1196</td>
<td>30,00</td>
<td>0,0797</td>
</tr>
</tbody>
</table>

FACTOR "A" PARA Q = 0,028500 m³.

<table>
<thead>
<tr>
<th>Profundidad</th>
<th>A</th>
<th>Profundidad</th>
<th>A</th>
<th>Profundidad</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,25</td>
<td>0,4210</td>
<td>10,25</td>
<td>0,2053</td>
<td>20,25</td>
<td>0,1039</td>
</tr>
<tr>
<td>0,50</td>
<td>0,4105</td>
<td>10,50</td>
<td>0,2005</td>
<td>20,50</td>
<td>0,1027</td>
</tr>
<tr>
<td>0,75</td>
<td>0,3970</td>
<td>10,75</td>
<td>0,1958</td>
<td>20,75</td>
<td>0,1014</td>
</tr>
<tr>
<td>1,00</td>
<td>0,3852</td>
<td>11,00</td>
<td>0,1913</td>
<td>21,00</td>
<td>0,1002</td>
</tr>
<tr>
<td>1,25</td>
<td>0,3642</td>
<td>11,25</td>
<td>0,1871</td>
<td>21,25</td>
<td>0,0990</td>
</tr>
<tr>
<td>1,50</td>
<td>0,3455</td>
<td>11,50</td>
<td>0,1830</td>
<td>21,50</td>
<td>0,0979</td>
</tr>
<tr>
<td>1,75</td>
<td>0,3280</td>
<td>11,75</td>
<td>0,1791</td>
<td>21,75</td>
<td>0,0967</td>
</tr>
<tr>
<td>2,00</td>
<td>0,3126</td>
<td>12,00</td>
<td>0,1754</td>
<td>22,00</td>
<td>0,0956</td>
</tr>
<tr>
<td>2,25</td>
<td>0,2996</td>
<td>12,25</td>
<td>0,1718</td>
<td>22,25</td>
<td>0,0946</td>
</tr>
<tr>
<td>2,50</td>
<td>0,2881</td>
<td>12,50</td>
<td>0,1684</td>
<td>22,50</td>
<td>0,0935</td>
</tr>
<tr>
<td>2,75</td>
<td>0,2775</td>
<td>12,75</td>
<td>0,1651</td>
<td>22,75</td>
<td>0,0925</td>
</tr>
<tr>
<td>3,00</td>
<td>0,2681</td>
<td>13,00</td>
<td>0,1619</td>
<td>23,00</td>
<td>0,0915</td>
</tr>
<tr>
<td>3,25</td>
<td>0,2597</td>
<td>13,25</td>
<td>0,1588</td>
<td>23,25</td>
<td>0,0905</td>
</tr>
<tr>
<td>3,50</td>
<td>0,2525</td>
<td>13,50</td>
<td>0,1559</td>
<td>23,50</td>
<td>0,0895</td>
</tr>
<tr>
<td>3,75</td>
<td>0,2461</td>
<td>13,75</td>
<td>0,1531</td>
<td>23,75</td>
<td>0,0886</td>
</tr>
<tr>
<td>4,00</td>
<td>0,2403</td>
<td>14,00</td>
<td>0,1503</td>
<td>24,00</td>
<td>0,0877</td>
</tr>
<tr>
<td>4,25</td>
<td>0,2349</td>
<td>14,25</td>
<td>0,1477</td>
<td>24,25</td>
<td>0,0868</td>
</tr>
<tr>
<td>4,50</td>
<td>0,2297</td>
<td>14,50</td>
<td>0,1451</td>
<td>24,50</td>
<td>0,0859</td>
</tr>
<tr>
<td>4,75</td>
<td>0,2253</td>
<td>14,75</td>
<td>0,1427</td>
<td>24,75</td>
<td>0,0850</td>
</tr>
<tr>
<td>5,00</td>
<td>0,2210</td>
<td>15,00</td>
<td>0,1403</td>
<td>25,00</td>
<td>0,0842</td>
</tr>
<tr>
<td>5,25</td>
<td>0,2170</td>
<td>15,25</td>
<td>0,1380</td>
<td>25,25</td>
<td>0,0833</td>
</tr>
<tr>
<td>5,50</td>
<td>0,2132</td>
<td>15,50</td>
<td>0,1358</td>
<td>25,50</td>
<td>0,0825</td>
</tr>
<tr>
<td>5,75</td>
<td>0,2096</td>
<td>15,75</td>
<td>0,1336</td>
<td>25,75</td>
<td>0,0817</td>
</tr>
<tr>
<td>6,00</td>
<td>0,2062</td>
<td>16,00</td>
<td>0,1318</td>
<td>26,00</td>
<td>0,0809</td>
</tr>
<tr>
<td>6,25</td>
<td>0,2030</td>
<td>16,25</td>
<td>0,1295</td>
<td>26,25</td>
<td>0,0802</td>
</tr>
<tr>
<td>6,50</td>
<td>0,2000</td>
<td>16,50</td>
<td>0,1276</td>
<td>26,50</td>
<td>0,0794</td>
</tr>
<tr>
<td>6,75</td>
<td>0,1971</td>
<td>16,75</td>
<td>0,1256</td>
<td>26,75</td>
<td>0,0787</td>
</tr>
<tr>
<td>7,00</td>
<td>0,1943</td>
<td>17,00</td>
<td>0,1238</td>
<td>27,00</td>
<td>0,0779</td>
</tr>
<tr>
<td>7,25</td>
<td>0,1916</td>
<td>17,25</td>
<td>0,1220</td>
<td>27,25</td>
<td>0,0772</td>
</tr>
<tr>
<td>7,50</td>
<td>0,1890</td>
<td>17,50</td>
<td>0,1203</td>
<td>27,50</td>
<td>0,0765</td>
</tr>
<tr>
<td>7,75</td>
<td>0,1865</td>
<td>17,75</td>
<td>0,1184</td>
<td>27,75</td>
<td>0,0758</td>
</tr>
<tr>
<td>8,00</td>
<td>0,1841</td>
<td>18,00</td>
<td>0,1169</td>
<td>28,00</td>
<td>0,0751</td>
</tr>
<tr>
<td>Profundidad</td>
<td>A</td>
<td>Profundidad</td>
<td>A</td>
<td>Profundidad</td>
<td>A</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>0,25</td>
<td>7,7514</td>
<td>10,25</td>
<td>0,1890</td>
<td>20,25</td>
<td>0,0956</td>
</tr>
<tr>
<td>0,50</td>
<td>3,8757</td>
<td>10,50</td>
<td>0,1845</td>
<td>20,50</td>
<td>0,0945</td>
</tr>
<tr>
<td>0,75</td>
<td>2,5838</td>
<td>10,75</td>
<td>0,1802</td>
<td>20,75</td>
<td>0,0933</td>
</tr>
<tr>
<td>1,00</td>
<td>1,9378</td>
<td>11,00</td>
<td>0,1761</td>
<td>21,00</td>
<td>0,0922</td>
</tr>
<tr>
<td>1,25</td>
<td>1,5502</td>
<td>11,25</td>
<td>0,1722</td>
<td>21,25</td>
<td>0,0912</td>
</tr>
<tr>
<td>1,50</td>
<td>1,2919</td>
<td>11,50</td>
<td>0,1685</td>
<td>21,50</td>
<td>0,0901</td>
</tr>
<tr>
<td>1,75</td>
<td>1,1073</td>
<td>11,75</td>
<td>0,1649</td>
<td>21,75</td>
<td>0,0891</td>
</tr>
<tr>
<td>2,00</td>
<td>0,9689</td>
<td>12,00</td>
<td>0,1614</td>
<td>22,00</td>
<td>0,0880</td>
</tr>
<tr>
<td>2,25</td>
<td>0,8612</td>
<td>12,25</td>
<td>0,1582</td>
<td>22,25</td>
<td>0,0870</td>
</tr>
<tr>
<td>2,50</td>
<td>0,7731</td>
<td>12,50</td>
<td>0,1550</td>
<td>22,50</td>
<td>0,0861</td>
</tr>
<tr>
<td>2,75</td>
<td>0,7046</td>
<td>12,75</td>
<td>0,1519</td>
<td>22,75</td>
<td>0,0851</td>
</tr>
<tr>
<td>3,00</td>
<td>0,6461</td>
<td>13,00</td>
<td>0,1490</td>
<td>23,00</td>
<td>0,0842</td>
</tr>
<tr>
<td>3,25</td>
<td>0,5962</td>
<td>13,25</td>
<td>0,1462</td>
<td>23,25</td>
<td>0,0833</td>
</tr>
<tr>
<td>3,50</td>
<td>0,5536</td>
<td>13,50</td>
<td>0,1435</td>
<td>23,50</td>
<td>0,0824</td>
</tr>
<tr>
<td>3,75</td>
<td>0,5167</td>
<td>13,75</td>
<td>0,1409</td>
<td>23,75</td>
<td>0,0815</td>
</tr>
<tr>
<td>4,00</td>
<td>0,4845</td>
<td>14,00</td>
<td>0,1384</td>
<td>24,00</td>
<td>0,0807</td>
</tr>
<tr>
<td>4,25</td>
<td>0,4560</td>
<td>14,25</td>
<td>0,1359</td>
<td>24,25</td>
<td>0,0799</td>
</tr>
<tr>
<td>4,50</td>
<td>0,4306</td>
<td>14,50</td>
<td>0,1336</td>
<td>24,50</td>
<td>0,0790</td>
</tr>
<tr>
<td>4,75</td>
<td>0,4079</td>
<td>14,75</td>
<td>0,1314</td>
<td>24,75</td>
<td>0,0782</td>
</tr>
<tr>
<td>5,00</td>
<td>0,3875</td>
<td>15,00</td>
<td>0,1292</td>
<td>25,00</td>
<td>0,0775</td>
</tr>
<tr>
<td>5,25</td>
<td>0,3691</td>
<td>15,25</td>
<td>0,1270</td>
<td>25,25</td>
<td>0,0767</td>
</tr>
<tr>
<td>5,50</td>
<td>0,3523</td>
<td>15,50</td>
<td>0,1250</td>
<td>25,50</td>
<td>0,0759</td>
</tr>
<tr>
<td>5,75</td>
<td>0,3370</td>
<td>15,75</td>
<td>0,1230</td>
<td>25,75</td>
<td>0,0752</td>
</tr>
<tr>
<td>6,00</td>
<td>0,3229</td>
<td>16,00</td>
<td>0,1211</td>
<td>26,00</td>
<td>0,0745</td>
</tr>
<tr>
<td>6,25</td>
<td>0,3100</td>
<td>16,25</td>
<td>0,1192</td>
<td>26,25</td>
<td>0,0738</td>
</tr>
<tr>
<td>6,50</td>
<td>0,2981</td>
<td>16,50</td>
<td>0,1174</td>
<td>26,50</td>
<td>0,0731</td>
</tr>
<tr>
<td>6,75</td>
<td>0,2870</td>
<td>16,75</td>
<td>0,1157</td>
<td>26,75</td>
<td>0,0724</td>
</tr>
<tr>
<td>7,00</td>
<td>0,2768</td>
<td>17,00</td>
<td>0,1140</td>
<td>27,00</td>
<td>0,0717</td>
</tr>
<tr>
<td>7,25</td>
<td>0,2673</td>
<td>17,25</td>
<td>0,1123</td>
<td>27,25</td>
<td>0,0711</td>
</tr>
<tr>
<td>7,50</td>
<td>0,2583</td>
<td>17,50</td>
<td>0,1107</td>
<td>27,50</td>
<td>0,0704</td>
</tr>
<tr>
<td>7,75</td>
<td>0,2500</td>
<td>17,75</td>
<td>0,1091</td>
<td>27,75</td>
<td>0,0698</td>
</tr>
<tr>
<td>8,00</td>
<td>0,2422</td>
<td>18,00</td>
<td>0,1076</td>
<td>28,00</td>
<td>0,0692</td>
</tr>
<tr>
<td>8,25</td>
<td>0,2349</td>
<td>18,25</td>
<td>0,1061</td>
<td>28,25</td>
<td>0,0686</td>
</tr>
<tr>
<td>8,50</td>
<td>0,2280</td>
<td>18,50</td>
<td>0,1047</td>
<td>28,50</td>
<td>0,0680</td>
</tr>
<tr>
<td>8,75</td>
<td>0,2214</td>
<td>18,75</td>
<td>0,1033</td>
<td>28,75</td>
<td>0,0674</td>
</tr>
<tr>
<td>9,00</td>
<td>0,2153</td>
<td>19,00</td>
<td>0,1020</td>
<td>29,00</td>
<td>0,0668</td>
</tr>
<tr>
<td>9,25</td>
<td>0,2094</td>
<td>19,25</td>
<td>0,1006</td>
<td>29,25</td>
<td>0,0662</td>
</tr>
<tr>
<td>9,50</td>
<td>0,2039</td>
<td>19,50</td>
<td>0,0993</td>
<td>29,50</td>
<td>0,0656</td>
</tr>
<tr>
<td>9,75</td>
<td>0,1987</td>
<td>19,75</td>
<td>0,0981</td>
<td>29,75</td>
<td>0,0651</td>
</tr>
<tr>
<td>10,00</td>
<td>0,1937</td>
<td>20,00</td>
<td>0,0968</td>
<td>30,00</td>
<td>0,0646</td>
</tr>
</tbody>
</table>

FACTOR "A" PARA Q = 0,030862 m³.
CAPÍTULO IV

EXPLORACION DE GRAVAS AURÍFERAS REALIZADA EN RÍO BLANCO (FAMATINA), PROVINCIA DE LA RIOJA

En el Capítulo III, al describir los métodos que se emplean para hacer una exploración aurífera, se ha hecho referencia varias veces a los trabajos efectuados en Río Blanco.

Para que todos los lectores puedan darse una idea cabal de lo que representa una exploración aurífera, daré a continuación una reseña del origen de los trabajos en el referido punto.

A principios del año 1932, encontrábanse en la República Argentina dos ingenieros norteamericanos, pertenecientes al personal de la “United States Smelting, Refining and Mining Co.”, de Boston, Estados Unidos, quienes habían sido enviados por la citada compañía con el fin de explorar y “muestrear” un placer aurífero situado en Cañada Honda, cerca de la estación La Toma, F. C. Pacífico, provincia de San Luis, cuyos propietarios, los señores Gibson y Bradbury habían dado a la citada compañía una opción para explorar el referido placer aurífero si los resultados de los estudios que practicasen los citados ingenieros resultasen satisfactorios para “U. S. Smelting, Refining and Mining Co.”.

Estos dos ingenieros norteamericanos eran los señores Maillot (jefe de la comisión) y Walter Neal.

Antes de seguir adelante, mencionaré en pocas palabras la importancia que tenía la misión de estos ingenieros norteamericanos.

La “U. S. Smelting, Refining and Mining Co.”, de Boston, Estados Unidos, es una de las más grandes compañías, no solamente norteamericanas, sino también mundiales, en cuanto se refiere al comercio de minerales y que, como su nombre lo indica, se ocupa de asuntos mineros, fundición de minerales y su refinación, abarcando como se ve, todas las actividades que son necesarias para extraer la materia prima y laborarla hasta que se encuentra en condiciones de venta. La especialidad de esta compañía son los metales nobles: oro y plata.

Entre otros de los lugares donde esta compañía tiene explotaciones mineras, se puede citar a Fairbank y Nome, en Alaska, donde explota placeres auríferos, con varias dragas a la vez, y en diversas partes de México, donde tiene minas, fundiciones y refinerías de plata y oro. Para dar una idea de la importancia de esta compañía, mencionaré que el 50% de la producción mejicana de plata es controlada por la misma. Estos datos ponen de manifiesto la importancia de esta compañía.

Es sabido que una mina tiene una vida limitada, cuyo término coincide con el agotamiento de las vetas o mineral que se explota, o cuando los gastos de extracción y beneficio son superiores al valor del material o mineral sacado.

Pequeñas compañías mineras se forman para explotar determinadas minas, vetas o pertenencias; agotado el mineral de las mismas, estas compañías se disuelven por liquidación.

No tienen igual fin las compañías fuertes e importantes, tales como la “U. S. Smelting, Refining and Mining Co.”; éstas, a medida que explotan una serie de minas, se preocupan a la vez en ir preparando otras para
expolarlas cuando las primeras, por agotamiento o por haber dejado de ser económicamente explotables, deben ser abandonadas.

Este trabajo de previsión y de preparación de futuras explotaciones, es muy delicado; exige tiempo y fuertes gastos, pero como es indispensable para la vida y desarrollo de una empresa minera de la magnitud de la que se trata, esas compañías le prestan la preferente atención que la práctica les aconseja y para lo cual tienen sus oficinas de exploración, con personal experto en estos asuntos y un archivo ordenado, tal que le permite conocer en cualquier momento en qué condiciones se encuentran respecto a su futuro desarrollo o actividad, teniendo en cuenta el estado de sus exploraciones y de las reservas reconocidas que tienen a su disposición.

Para dar una idea de lo que representa este trabajo de exploración, basta decir que toda oferta de minas que se le hace, es estudiada por sus expertos y sí, según los informes presentados por los ofertantes y por el conocimiento y antecedentes que sobre la zona tengan sus oficinas de exploración, estas compañías destacan personal propio para que examine la mina ofrecida, saque muestras y estudie las condiciones de explotabilidad de la misma, su informe es el que sirve de base a la compañía para resolver si se debe hacer exploración y muestreo y ubicación a fondo, o si se debe desechar la oferta.

De cién ofertas aceptadas para revisar y muestrear provisionalmente, en general una o dos resultan dignas de ser exploradas y muestreadas a fondo.

Cada exploración preliminar exige un gasto elevado, de modo que por cada oferta revisada y aceptada para hacer una exploración formal, por lo pronto carga con cincuenta o cien comisiones improductivas.

Una compañía sería no inicien la explotación formal de una mina sin tener antes la seguridad de que el negocio será productivo.

La forma de conocer de antemano si un negocio minero será productivo, consiste en una formal exploración y muestreo, hecho por personal de suma confianza y experto en esos asuntos.

La exploración, muestreo y ubicación formal y definitiva de una mina de veta exige largo tiempo y gastos cuantiosos; lo mismo pasa con un placer aurífero. A pesar de los fuertes desembolsos que tales trabajos exigen, las compañías importantes no vacilan en sufragarlos, teniendo en cuenta que ello es fundamental para su futura vida.

Estas operaciones de exploración, muestreo y ubicación que, como he dicho, son fundamentales para decidir a una empresa en la explotación de una mina, son confiadas para su realización a personal de entera confianza de las compañías, hombres de probada abnegación y valor civil, cuyos informes absolutamente fidedignos servirán para aceptar o rechazar la opción de una mina.

Avanzadas de “U. S. Smelting, Refining and Mining Co.”, eran los citados ingenieros Maillot y Neal.

Después que estos ingenieros hubieron estudiado los placeres auríferos de Cañada Honda, objeto de su viaje al país, estudiaron una oferta sobre placeres auríferos en Andacollo (Neuquén), para cuyo efecto se trasladaron a ese territorio y, una vez terminado este estudio y próximos a emprender viaje dè regreso a los Estados Unidos de Norte América, la “U. S. Smelting, Refining and Mining Co.”, aceptó una opción para explorar unos placeres auríferos de parte de los señores Bustamante y Villanueva.
Estos placeres estaban situados en Río Blanco y en Ramblones (distrito minero de Famatina), provincia de La Rioja.

El ingeniero Maillot efectuó una inspección ocular a los placeres citados, y calculando a ojo el volumen de gravas que había en condiciones de ser explotadas, se formó la idea de que conteniendo estas gravas por unidad de volumen (yardas o metros cúbicos) una cantidad de oro que hiciera económicamente explotables esos placeres, la opción que tenía su compañía podía resultar conveniente.

El término “opción” quiere indicar lo siguiente: entre el poseedor del derecho de cateo o propietario de la mina ofrecida y la compañía, se firma un contrato en el cual se estipula que dentro de determinado plazo, un año por ejemplo, la compañía puede, a su solo juicio, aceptar en compra o en participación de explotación (pagando un royalty fijado de antemano), la mina o cateo ofrecidos.

En el espacio de tiempo en que puede aceptar o abandonar la oferta, la compañía hace efectuar trabajos de exploración, muestreo y ubicación, para conocer la riqueza de la mina o placer ofrecido y ver si le conviene o no aceptar la opción.

La exploración, muestreo y ubicación de los placeres auríferos de Río Blanco y Ramblones, según los términos de la opción, debían ser hechos con elementos y a costa de los señores Bustamante y Villanueva.

Como estos señores no tuvieron máquina apropiada para hacer tal exploración, se pusieron en contacto con la Dirección de Minas y Geología, con el fin de ver si ella podía facilitarles elementos para llevar a cabo ese trabajo.

Los ingenieros Maillot, Neal y Pagés (apoderado éste, en estos asuntos, del señor Villanueva) y el señor Bustamante, acompañados por el jefe de Talleres y Almacenes de esta Dirección, visitaron y observaron la existencia de máquinas perforadoras y elementos que había en ese entonces en Talleres y Almacenes y llegaron a la conclusión de que ninguna de las máquinas que en ese momento había en depósito era apta para la exploración aurífera que se proponían.

Posteriormente, esos señores hallaron en la casa Juan y José Drysdale y Cía., una máquina perforadora “Keystone” N° 3, prototipo de máquina perforadora para exploraciones auríferas; esta máquina perforadora estaba sin motor, y la casa citada tenía pocas herramientas adecuadas a los fines propuestos.

En definitiva, resolvieron lo siguiente: que el señor B. Villanueva adquiriese la máquina perforadora “Keystone”, con un motor a nafta vendido por la misma casa Drysdale y con las herramientas que la misma pudiera entregar.

El resto de los materiales, que los citados ingenieros consideraron necesarios y suficientes, incluso zapatos y cañerías para entubación, serían provistos por la Dirección de Minas y Geología.

También pidieron a la mencionada Dirección que les recomendase un buen jefe de sondeo y un ayudante, para que manejasen la máquina perforadora.

La Dirección propuso como jefe de sondeo a Romualdo Acuña, excelente perforador, y como ayudante, a Emilio Marín, también con muchos años de práctica en trabajos de perforación.

En Talleres y Almacenes prepararon los materiales que indicaron los antes citados ingenieros y, una vez que estuvieron listos, fueron des-
pachados con destino a Chilécto. Conjuntamente con esos materiales se embarcó la máquina perforadora.

El ayudante Marín partió en seguida para Chilécto, y al jefe de sondeo Acuña, que se encontraba en la provincia de Santiago del Estero, se le enviaron los pasajes para que se trasladase también a Chilécto. Como este último tardaría en llegar, se le indicó al ayudante Marín que se encargase del transporte de los materiales desde Chilécto al lugar de la perforación.

Cuando los ingenieros americanos estimaron que la cargas ya habrían llegado a Chilécto y parte de las mismas se hubieran transportado a Río Blanco, resolvieron ausentarse para este último punto.

En tal circunstancia, el señor B. Villanueva, que debía embarcarse para Europa, resuelve que la dirección técnica de los trabajos y el control de las operaciones que hicieran los ingenieros americanos, estuviera a cargo de un ingeniero argentino, y con tal fin pidió la colaboración de la Dirección de Minas y Geología.

La Dirección de Minas, con el propósito de coadyuvar con todos los medios disponibles a su alcance en la exploración que se proyectaba realizar, acepta el pedido que se le hace y designa al suscrito para tal puesto.

Las instrucciones que se dieron al suscrito pueden resumirse así: los ingenieros americanos fijarán los puntos donde deban hacerse los sondeos; el suscrito correría con todo lo concerniente a los trabajos y certificaría los resultados que manifestaran haber encontrado los citados ingenieros americanos. En términos generales, se me encomendaba que tratase por todos los medios posibles de que se llevaran a cabo y a feliz término los trabajos que se iban a realizar.

Lugar del trabajo.—Las tres perforaciones que se ejecutaron se hicieron sobre una línea transversal al Río Blanco, al pie del mogote del mismo nombre (ver el croquis); la ubicación de ese lugar en la zona, puede verse en el plano.

Descripción de la zona.—La región de Famatina es universalmente conocida, por los importantes trabajos mineros que en distintas épocas allí se han efectuado.

Célebres son las minas de La Mejicana, situadas en la falda oriental del macizo de Famatina, cuyo principal medio de comunicación con el pueblo de Chilécto es el alambrecarril que construyó el Gobierno nacional, y que es uno de los más importantes del mundo.

Hasta épocas no muy distantes, fué grande el movimiento minero de esta zona; se explotaban allí innumerables de vetas metalíferas y funcionaron importantes establecimientos de concentración y fundición de metales, uno de cuyos establecimientos, la fundición de Santa Florentina, ha llegado a producir de 12 a 15 toneladas de ejes de cobre, diariamente.

Simultáneamente, han trabajado allí mineros independientes, denominados “pirquíneros”, que beneficiaban por su cuenta, principalmente, minerales de oro y plata.

Hubo épocas en que la población principal del distrito Chilécto, contó con una población de 30.000 habitantes, teniendo entonces un extraordinario movimiento comercial, social y político y llegando a ser el punto de mayor influencia del norte del país.
Hoy día, las actividades mineras de la zona son reducidas, por infinidad de causas que no es el caso de tratar en detalle en este informe; causas que no deben atribuirse al agotamiento de los filones y placeres metalíferos, sino más bien a cuestiones económicas y de legislación.

El mogote de Río Blanco. — Se encuentra este mogote a 80 kilómetros al norte de Chilcito.

Chilcito es la estación terminal del ramal que sale desde Patquía, del Ferrocarril Central Norte Argentino (trocha un metro), y para ir hasta el citado mogote se tiene el camino nacional que, pasando por el pueblo de Famatina (30 kilómetros de Chilcito), va hasta el pueblo denominado Angulo (a 70 kilómetros de Chilcito).

Desde Angulo hasta el mogote de Río Blanco, se tiene que ir por el lecho del río Blanco.

El tramo de camino Chilcito - Angulo es transitable en todo tiempo, en casi toda su extensión, excepto unos pocos kilómetros por Famatina, donde el camino cruza varias veces el río Amarillo, donde su tránsito es difícil en las épocas de crecida de este río, cosa que ocurre pocas veces al año.

El tránsito por el cauce del río Blanco es algo pesado, por estar constituido el lecho del mismo por arena y grandes piedras y tener que cruzarse varias veces el curso del río. Son raras las grandes crecidas de este río, que impidan el tránsito por su lecho.

El mogote de Río Blanco es una elevación como de 600 metros sobre el nivel del río del mismo nombre, formado por rocas efusivas, principalmente andesita, que han emergido en una zona de rodados, areniscas y tobas dislocadas, que forman esa zona.

Dicen en la zona que esos rodados, areniscas y tobas, que son muy antiguas, contienen oro; no he podido comprobar eso.

En las faldas del mogote del Río Blanco se han explotado y se explotan aún, diversas vetas de mineral aurífero, y sobre este punto hay un informe muy interesante, hecho por el ingeniero Lannefors.

Hay actualmente allí un molino chileno para la explotación, por amalgamación, de minerales procedentes de las vetas que hay en el citado mogote.

Durante los primeros meses del año próximo pasado, se trabajó modestamente en este trapiche, beneficiándose minerales sacados de la mina Atahualpa (mogote de Río Blanco), haciendo uno lingote de oro de un kilogramo de peso, el cual fue obsequiado al señor Presidente de la Nación, como prueba de lo que se puede obtener de las minas de esa región.

El río Blanco. — Este río nace en los deshielos y vertientes de la falda oriental del macizo de Famatina; la primera parte de su curso va por cañones de piedra y sólo en sus 20 kilómetros últimos, antes de llegar al pueblo de Angulo, su cauce se hace más amplio; tanto por su margen derecha como por su margen izquierda, recibe numerosos arroyos afluentes que llevan agua sólo cuando llueve o nieva en abundancia.

Este río se pierde después de regar la zona del pueblo de Angulo. Se midió el caudal de este río el día 1° de agosto de 1932, dando 360 metros cúbicos por hora y siendo época de estiérc.
La pendiente del río, en la parte donde se hicieron las perforaciones, es de 18 por mil.

Recursos naturales de la zona. — Combustible: leña hay poca cantidad en la zona, apenas alcanza para suplir a las necesidades de los habitantes de la región.

Ganado: la ganadería está representada allí por cabras y mulas; los pocos animales vacunos que se encuentran, deben ser mantenidos con pastos llevados de otras partes.

La población de Angulo vive del producto que da una pequeña extensión de suelo, regado por aguas del río Blanco.

Peones y obreros simples, es fácil obtener por allí.

En caso de que en estos lugares se hicieran intensos trabajos de explotación, será necesario llevar todos los comestibles y demás cosas necesarias para el desenvolvimiento de grandes campamentos, desde Chilcito o Famatina o desde el norte, desde la estación Tinogasta.

Clima: El río Blanco, al pie del mogote del mismo nombre, se encuentra a unos 2.200 metros sobre el nivel del mar.

El clima en esta zona es muy benigno; en invierno nieva algunas veces (como puede verse en la lámina III, 1 y 2), pero estas nevadas son de poca intensidad; en verano la temperatura es muy agradable.

No hay en la zona fiebres palúdicas.

Régimen minero legal. — Todos los asuntos mineros se rigen por el Código Nacional de Minas.

La autoridad provincial de Minas está representada por la “Diputación de Minas”, con sede en el pueblo de Chilcito.

Como la minería ha sido la principal fuente de riqueza de la provincia de La Rioja, las actuales autoridades provinciales ven en el resurgimiento de esta actividad uno de los más grandes elementos que pueden provocar el engrandecimiento de la misma; persiguiendo tal fin, facilita en la forma más amplia que le es posible todo lo que se refiere a la instalación de nuevos trabajos mineros.

Método de exploración empleado. — El lugar donde se había resuelto hacer las perforaciones de exploración, era el cauce del río. Para ejecutar ese trabajo, se disponía de una máquina perforadora “Keystone No 3” accionada por un motor a nafta de 9 HP.

Debido principalmente a la altura sobre el nivel del mar del lugar donde se trabajaba, el mencionado motor a nafta resultó de una potencia insuficiente, lo que ocasionó atrasos en los trabajos de perforación; ese motor fue luego cambiado por un motor a gas-oil de 12 HP.

Se hace esta mención con el objeto de que el que tuviera que hacer un trabajo de esta índole, tome muy en cuenta la altura sobre el nivel del mar donde, debe funcionar el motor, con el fin de que no falle por esa causa.

El personal que estuvo en Río Blanco y que directa o indirectamente intervinió en los trabajos fue el siguiente:

1. El propietario de las minas.
2. Ingeniero por “U. S. Smelting, Refining and Mining Co.”.
3. Ingeniero por “U. S. Smelting, Refining and Mining Co.”.
4. Ingeniero director de los trabajos.
5. Jefe de sondeo, encargado de la máquina perforadora.
6. Ayudante para la máquina perforadora.
7. 8, 9 y 10. Peones para la máquina perforadora.
11. Administrador de las minas de Río Blanco.
12. Despensero, encargado de la proveeduría.
13. Cocinero.
15. Chauffeur para un automóvil doble faeton.
16. Chauffeur para un camión.

Posteriormente se agregaron:
17. Un mecánico, para el motor de la máquina perforadora.
18. Un obrero, encargado de sacar los caños de las perforaciones.

El camión se empleaba para hacer el transporte de comestibles y artículos menores, que se llevaban desde Chiclecito al sitio del trabajo.

El transporte de la máquina perforadora fue hecho por intermedio de un contratista, quien para llevarlo a cabo necesitó usar los siguientes elementos:

Catórice mulas de tiro, dos mulas de silla, un carro de dos ruedas con cuatro mulas (en este carro se llevaba el pasto y maíz necesarios para los animales). El personal encargado de este trabajo se componía de dos peones y un carrero.

Los trabajos de perforación, extracción y lavado de las muestras, análisis de las mismas y cálculo del oro contenido en el terreno, se hicieron siguiendo las normas que se han citado en el capítulo anterior y que, en resumen, son las siguientes:

1º Se hincaba a fuerza de golpes el caño de entubamiento provisto de un zapato con diámetro en el filo de 7 1/2" (19,05 cm.) sin perforar delante del zapato.
2º La profundidad que se hincaba cada vez era de 30,5 cm. o 61 cm. (uno o dos pies).
3º Antes de hincar la cañería, se medía la cantidad de relleno que había dentro de la cañería.
4º Después de hincar la cañería, se medía nuevamente la altura que tenía este relleno.
5º Luego se procedía a extraer ese relleno usando una cuchara a pistón o bomba de arena.
6º Se volcaba la cuchara a pistón en un canal de madera, de donde caía el material a un fuentón de hierro galvanizado.
7º Al sacarse el trépano y la bomba a pistón de la perforación, se lavaba cuidadosamente los cables y las herramientas con abundante agua, con el fin de que no quedara adherida a los mismos ninguna partícula de oro.
8º La bomba a pistón se lavaba también cuidadosamente, con el mismo fin, cuando estaba en el canal de madera.
9º Se tenía suma precaución de que los cables y herramientas no tuvieran grasa ni aceite, y a las roscas de las cañerías tampoco se les ponía grasa, con el fin de impedir que el oro quedase adherido a las partes enrasadas.
10. Una vez sacado todo el relleno, se lavaba prolijamente el canal de madera.
11. Todo el material que había en el fuentón que se había colocado a la salida del canal de madera se lavaba en el *rocker*.
12. Todo el material grueso y fino que salía del *rocker* se hacía caer en otro fuentón, con el fin de medir su volumen y comprobar si la entrada de muestra (relleno en la canería) había sido normal, o ver si había entrado en exceso o defecto la muestra.
13. Una vez terminado de lavar todo el material, se recogía en una batea (plato) la parte pesada de material que había quedado en los travesaños colocados en el fondo del "rocker". A la vez se lavaba cuidadosamente el fondo y paredes del "rocker" para sacar todo el "orito" que hubiera quedado adherido al mismo.
14. El material recogido en el plato era luego lavado para separar las partes livianas (arena) de la parte pesada (oro y fierro); este último quedaba en el plato.
15. Este material pesado se pasaba a un segundo plano más pequeño y se sacaba parte de los materiales extraños que estuvieran en el plato.
16. Cuando la cantidad de material que había en este plato pequeño era reducida, se extendía en el fondo del mismo y ya se podían individualizar las pepitas de oro (color).
17. Las pepitas de oro se recogían mediante una gota de mercurio.
18. Una vez terminada cada perforación, la gota de mercurio con el oro recogido se disolvía en ácido nítrico diluido en agua y se separaba el oro.
19. Pesado el oro sacado de cada perforación, se guardaba en un tubo de vidrio.
20. Con el peso obtenido de cada perforación, se hacía el cálculo del oro contenido por cada yarda o metro cúbico de grava.

Los partes de la tercera perforación se transcriben en las láminas XVIII y XIX.

Además de esos partes, se llevaban los partes diarios de la perforación, cuyo modelo se indica en la lámina XX.

Resultados. — En la lámina XXI se hace un cuadro resumen del resultado obtenido de las tres perforaciones.

Carácter del material que constituye el placer. — En los partes de perforación, se indica pie por pie, el carácter del material que forma el placer; además debo indicar que las piedras que se han encontrado tienen una dimensión máxima de 0,60 metros; el porcentaje de estas piedras lo estimo en un 5 % del material que forma el placer.

Carácter del "Bed-Rock" o "lecho". — Por las observaciones hechas durante la perforación, y por lo que se ve en las barrancas del río Blanco, el lecho está constituido por areniscas antiguas, cementadas y duras.

Carácter de las capas de aguas subterráneas. — En la perforación número 3, se encontró a los 17,38 metros una capa de agua surgente, con nivel piezométrico positivo de 0,91 metros.
Resumen — Como con los medios técnicos de que se dispone en la actualidad no resultan económicamente explotables estas gravas, no se hace una ubicación de las mismas, ni se indican las condiciones en que se debe hacer su explotación.

CAPITULO V

RESUMEN DE LOS MATERIALES NECESARIOS
PARA HACER UNA EXPLORACION AURIFERA EN PLACERES Y ALUVIONES

Como en general los lugares donde se encuentran los placeres y aluviones auríferos, están alejados de centros importantes de población donde se puedan surtir los exploradores de todos los elementos que necesitan, conviene que estas comisiones vayan provistas de la mayor cantidad posible de materiales, para evitar interrupciones en los trabajos, interrupciones que, en definitiva, entorpecen y encarecen el costo de la realización de los mismos.

Antes de iniciar una exploración, es muy conveniente, primero, hacer una inspección ocular del lugar donde se efectuarán los trabajos y tomar debida nota de los recursos con que se puede contar en esa zona; con esos datos y de regreso a un centro poblado, ya se puede planear perfectamente la expedición y ver qué elementos será necesario llevar.

Como dato ilustrativo se indica a continuación una lista de los principales materiales que conviene llevar en tales casos.

MATERIALES PARA EL ENSAYO DE ORO (lám. VIII, 1).

1 Balanza para pesar oro. Sensibilidad 0,5 mg., con juego de pesas en sistema métrico decimal.
1 Soporte para esa balanza (si no lo tiene la caja de la misma).
1 Lámpara de alcohol.
1 Trípode metálico para la lámpara de alcohol.
 1 Tela metálica para el trípode.
 1 Trozo de 100 × 100 mm. de amianto.
12 Crisoles de porcelana de 25 mm. de alto.
1 Probeta graduada de 50 cm³.
1 Pinza para manejar los crisoles.
50 Tubos de vidrio de 18 mm. Ø por 60 mm. de alto, con tapones de corcho o de goma.
100 Etiquetas engomadas de 10 × 10 mm.
1 Frasco con un litro de ácido nítrico químicamente puro (d = 1,42).
2 Frascos de un litro c/u., con agua destilada.
1 Frasco con un litro de alcohol puro.
1 Frasco de madera con 100 grs. de mercurio químicamente puro.
1 Rollo papel filtro para limpiar los crisoles.
1 Frasco con 25 cm³. de goma para pegar.
1 Frasco de boca ancha de 10 cm³. de capacidad, con tapón de goma y estuche de madera para guardar una gota de mercurio.
1 Imán de forma de herradura, de 10 cm.
1 Lupa de 20 aumentos.
1 Microscopio de bolsillo de 100 aumentos.

MATERIAL PARA LAVADO DE ARENAS AURIFERAS

1 Rocker (lámin. XVI).
1 Canal para descarga de la cuchara (lámin. XVII).
4 Barriles de 200 litros c/u. para tener agua.
6 Baldes de hierro galvanizado de 5 litros cada uno.
6 Fuentones de hierro galvanizado de 0,75 m. de Ø cada uno.
6 Ollas de hierro galvanizado, con mango, de cuatro litros, para echar agua.
2 Platos americanos grandes de 500 mm. Ø c/u. (o sartén de hierro negro).
2 Platos americanos chicos de 150 mm. Ø c/u. (o sartén de hierro negro).

MATERIALES VARIOS

1 Brújula “Brunton”.
1 Aparato fotográfico.
1 Películas para iéndem (o placas).
1 Alímetro (barómetro aneroide).
1 Pico de minero.
1 Valijín con correa para llevar libreta, lápiz, etcétera.
6 Lápices HB.
6 Lápices 2 H.
1 Cortaplumas.
1 Metro de metal, plegadizo.
1 Block de papel para dibujó.
1 Block de papel milimetrado.

100 Partes diarios.
20 Partes de perforación.
1 Libro de servicio.
1 Block de papel cuadrículado.
1 Porta anotador de aluminio.
1 Goma para lápiz.
1 Goma para tinta.
1 Triple decímetro.
10 Plumas para dibujo.
1 Lápicer.
1 Lápicerita fuente.
1 Caja de compás.
1 Escuadra 45°.
1 Escuadra 60°.
1 Transportador.
1 Cinta métrica (ruleta) de metal de 25 metros.
1 Máquina de escribir portátil.
1 Block de papel tamaño oficio para máquina.
1 Frasco de tinta china.
1 Frasco de tinta roja para dibujo.
Los materiales que he indicado anteriormente, servirán para trabajar en una comisión, cualquiera que sea la máquina perforadora que se emplee.

Hubiera sido muy interesante poder hacer una lista detallada y completa de los elementos que se necesitarán en un campamento explorador aurífero, pero no lo hago teniendo en cuenta que esa lista podrá variar de acuerdo con la máquina perforadora que se use y los medios con que se cuente en el lugar donde se trabaje.

El ingeniero que llegue a tener bajo su responsabilidad un campamento de esta clase, al hacer la lista de los materiales que necesitará el campamento, conviene que tenga en cuenta los siguientes:

—Materiales para el ensayo de oro (indicados anteriormente).
—Herramientas para la perforación, extracción de muestras, entubación, desentubación, completas y de la mejor calidad.
—Herramientas para herrero.
—Herramientas para mecánico (incluyendo una máquina a pedestal para agujercar).
—Herramientas para hojalatero.
—Herramientas para carpintero.
—Botiquín.
—Trajes impermeables para el personal y botas de goma.
—Utiles de escritorio para el campamento.
—Carpas para alojamiento del personal.
—Medios de transporte (camiones, carros, mulas, arneses para mulas).
—Menaje para la comida del personal de todo el campamento.
—Maderas para la construcción de rockers, canales, etcétera.
CAPITULO VI

EXPLORACION DE PLACERES AURIFEROS DE PEQUEÑO ESPESOR

Cuando el placer aurífero que se trata de explorar es de arenas sueltas, con partículas cementadas pero relativamente blandas, con pocas piedras y que tenga el lecho o bed rock a una profundidad de 12 ó 15 metros y aun hasta 30 metros en casos especiales, para ejecutar este trabajo puede emplearse un equipo a mano.

Los equipos “Banca” son construidos por la compañía “Werf Conrad”, de Haarlem, Holanda.

EQUIPO A MANO PARA PERFORAR

Como este tipo de equipo es muy manuable y de un costo reducido, al alcance de cualquier explorador, y como los resultados que pueden obtenerse son ampliamente satisfactorios, se hace a continuación una descripción de los mismos y del modo de usarlos.

La lámina XI muestra algunas de las partes constitutivas de un equipo “Banca”.

Hay equipos de esta clase para caños de 121 mm, Ø exterior (4” interior) y para caños de 165 mm, Ø exterior (6” interior).

Los caños tienen un largo medio de 1,50 metros.

En la parte inferior del primer caño se coloca un zapato de acero. Luego se hace un agujero en el lugar donde se propone perforar, de 50 ó 60 centímetros de profundidad. Se coloca bien vertical el primer caño en el citado agujero y se calza exteriormente. Luego se enrosca, en la parte superior del caño, la cabeza porta-plataforma, y antes de que esté completamente enroscada, se coloca la plataforma, puesta la cual, se termina de enroscar la cabeza citada (lám. XII, 1).

Sobre la cabeza porta-plataforma se coloca la cabeza golpeadora. Se coloca luego la doble llave para caños, en cuyas abrazaderas se introducen las dos palancas para hacer girar la cañería.

Estando la cañería armada en la forma citada precedentemente, se puede iniciar el trabajo de hincar la cañería. Cuatro hombres (dos en cada palanca) hacen girar la cañería, tratando de que ésta se mantenga bien vertical (lám. XII, 2).

Cuatro hombres subidos en la plataforma, golpean sobre la cabeza golpeadora de la cañería con una maza de madera o mejor aún de hierro de unos 90 kilogramos de peso. Por efecto de los golpes de esta maza, y favorecida por la rotación, la cañería se hunde paulatinamente. Cuando la cañería se hince 25 ó 50 cm., se suspende la hincia.
La profundidad a que se ha hundido la cañería, se conoce por las marcas de tiza que sobre ella se han trazado cada 25 centímetros a partir del filo del zapato.

Se mide luego la cantidad de relleno que ha entrado en la cañería, dato que se anota en el “Parte de perforación”.

Se vierte 15 ó 20 litros de agua en la cañería y luego se procede a sacar el relleno, usando la euchara a pistón o bomba de arena. La bomba de arena es maniobrada a mano.

Si el relleno es duro, se remueve primero con el trépano a tirabuzón, o con la euchara a lengüeta.

Si el relleno es muy duro, o hay alguna piedra, entonces se usa el trépano.

Sacado el relleno, se mide lo que ha quedado en la cañería y se continúa de nuevo la operación.

El relleno sacado con la euchara se trata exactamente como se ha indicado en el Capítulo IV, Nos. 6 al 20 (páginas 33 y 34).

Hincado un caño, se saca la plataforma y la cabeza porta-plataforma; se enrocea un nuevo caño, luego se coloca la plataforma y se sigue trabajando.

Cuando por ser compacto el terreno, es difícil hacer rotar la columna de caños con los cuatro hombres, se puede emplear un caballo (lámina XIII, 1).

Terminada una perforación, se sacan las cañerías, empleando primero el gato a tornillo y luego usando una palanca apoyada en el soporte (lám. XIII, 2).

MATERIALES QUE COMPRENEN UN EQUIPO A MANO “BANCA” PARA CAÑOS DE 121 mm. Ø EXTERIOR (4" Ø INTERIOR)

<table>
<thead>
<tr>
<th>N° de la pieza (*)</th>
<th>Nombres de las herramientas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Plataforma seccionada para caños de 121 mm.</td>
</tr>
<tr>
<td>3</td>
<td>Cabeza porta-plataforma.</td>
</tr>
</tbody>
</table>

CASOS, UNIONES Y ZAPATOS

<table>
<thead>
<tr>
<th>5</th>
<th>Caños de 121 mm. Ø, de 1,00 m. de largo.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Caños de 121 mm. Ø, de 2,00 m. de largo.</td>
</tr>
<tr>
<td></td>
<td>Caños de 121 mm. Ø, de 0,623 m. de largo para que, enroscado al zapato N° 6, pueda formarse un largo de 1 metro.</td>
</tr>
<tr>
<td>6</td>
<td>Zapato para caños de 121 mm. Ø.</td>
</tr>
<tr>
<td></td>
<td>Cuplas para caños de 121 mm. Ø.</td>
</tr>
</tbody>
</table>

LLAVES PARA CAÑOS

9	Llave doble para hacer girar los caños.
11	Llave simple para caños.
43	Llave a cadena para caños.

BARRAS DE SONDEO Y HERRAMIENTAS PARA IDEM

| 15 | Barras de sondeo de acero de 2 m. de largo cada una. |
| 15 | Barras de sondeo de aluminio de 3 m. de largo cada una. |

(*) Ver lám. XI.
Barras de sondeo de 0.952 m. de largo para maniobra.

14 Llave para hacer girar las barras de sondeo.
Elevador para barra de sondeo.
18 Horqueta para barra de sondeo.

HERRAMIENTAS PARA PERFORAR

16 Lanza para B/s.
19 Trépano para caños 121 mm. (tipo (hacha)
20 Trépano para caños 121 mm. (tipo cruz).
20b Trépano para caños 121 mm. (tipo aletas).
21 Mecha espiral corta para perforar dentro de caños de 121 mm.
22 Mecha espiral larga para perforar fuera de caños de 121 mm.
24 Cuchara a lengüeta, corta, para perforar dentro de caños de 121 milímetros.
25 Cuchara a lengüeta, larga, para perforar fuera de caños de 121 milímetros.
27 Cuchara a bola con zapato liso.
Cuchara a bola con zapato espiral.
Cuchara a charnela con zapato liso.
30 Bola para cuchara.
32 Zapato liso para cuchara.
40 Zapato dentrado para cuchara.
29 Zapato espiral para cuchara.
54 Zapato a charnela para cuchara.
60 Zapato a trépano.
61 Bomba de arena o cuchara pistón.
69 Saca-testigo de 121 milímetros.

HERRAMIENTAS PARA HINCAR LA CAÑERIA

57 Cabeza golpeadora para caños de 121 mm. Ø.
Maza o martinet de 90 kilogramos.
Anillo de hierro y manubrio para maza de madera.

HERRAMIENTAS PARA SACAR CAÑERIA

1 Cabeza elevadora para caños.
33 Grampa a mordaza automática.
34 Soporte para sacar caños.
44 Cadena con argolla para sacar caños de 121 mm. Ø.
Juego de hierro para el balancín de madera para sacar caños.
65 Gato a tornillo para caños.
66 Grampa a tornillo para sacar caños.
Llave para los bulones de la pieza 66.

ELEMENTOS - PARA PERFORAR A MAS DE 10 METROS

Grampa para hacer girar los caños de 121 mm. con caballos.
55 Guinche a resorte.
68 Elevador para barras de sondeo.
HERRAMIENTAS DE PESCA

56 Juego de tijera para barra de sondeo.
62 Zapato para pescar herramientas o piedras para agregar a la cuchara.
63 Gancho de suerte para barra de sondeo.

HERRAMIENTAS VARIAS

— “Rocker” o “Cuna” para lavar las muestras (lám. XIV, 1).
— Cajón para vaciar la cuchara (lám. XIV, 2).
— Elementos para ensayar el oro (descripto para la máquina “Keystone”).
— Herramientas para herrero para afilar trépanos.

CAPITULO VII

FORMA DE HACER UN INFORME SOBRE EXPLORACION
DE UN PLACER AURIFERO

Cuando se haya efectuado una exploración aurífera, al hacer el informe de ella, convendrá redactarlo en la siguiente forma:

—Sumario y conclusiones.
—Ubicación de la propiedad, nombres y posiciones relativas de las pertenencias o de los diferentes blocks, arenas, etcétera.
—Descripción de los trabajos que en esas zonas se han hecho anteriormente, resultados obtenidos y dificultades que hubo.
—Geología económica, topografía, vegetación, clima, facilidad de transporte en la zona, planos topográficos de la zona y de las pertenencias.
—Leyes, decretos y disposiciones gubernamentales que traten sobre las explotaciones mineras del lugar, referidas a placers auríferos, e impuestos.
—Métodos de exploración empleados; plano indicando los lugares donde se efectuaron.
—Carácter del material que constituye el placer.
—Indicar si en él se encuentran grandes piedras, y cómo podrán trabajar eventualmente las dragas.
—El carácter del bed-rock o lecho sobre el que descansan las gravas y su contorno aproximado.
—Características del agua que se encuentra en el subsuelo, indicando su nivel piezométrico.
—Resultado numérico de los ensayos de oro hechos.
—Cubricación de las gravas exploradas, con un plano de su extensión dentro de las pertenencias.
—Fotografías de la zona de los trabajos ejecutados antes y de los que se encuentran en ejecución.
—Métodos mineros que convendría emplear para la explotación de las gravas exploradas.
—Costo y facilidades para la provisión de combustibles, agua, maderas, explosivos, fuerza motriz, materiales de consumo y alimentos para el personal.
—Costo de la mano de obra.
—Costo de transportes.
—Costo probable de trabajo y condiciones en que se desarrollará. Financiación de la operación.
—Mercado probable del mineral producido.
—Escala en que se podría desarrollar la explotación, equipos necesarios y capital requerido.
—Estimación de la ganancia probable.
—Agradecimiento de las atenciones recibidas de las personas que contribuyeron a facilitar la operación de exploración o que suministraron datos o elementos, y personal que trabajó en la exploración.
INDICE

<table>
<thead>
<tr>
<th>CAPITULO I</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefacio. — Datos históricos</td>
<td>5</td>
</tr>
<tr>
<td>El oro en la República Argentina</td>
<td>6</td>
</tr>
</tbody>
</table>

CAPITULO II	
Exploración y cubricación de arenas metalíferas de placeres y aluviones. — Aluviones y placeres	8
Forma y nomenclatura de los placeres	8
Exploración de placeres. — Cortes abiertos	9
Exploración con pozos	9
Exploración con pozos perforados	9
Proporción entre el material explorado y a explotar	10

CAPITULO III	
Trabajos para reconocimiento de placeres. — Generalidades	11
Reglas para llevar a cabo cateos de placeres y razones de las mismas	14
Forma de hacer una perforación de exploración aurífera, con máquina a cable	15
Lavado de las arenas y gravas con el “rocker”	19
Lavado de las arenas con “platos” o “bateas”	20
Ensayo del oro	22
Tratamiento de la amalgama	22
Fineza del oro	22
Cálculo del oro contenido en cada yarda cúbica	22
Cálculo del oro contenido en cada metro cúbico	23
Factor “A” para \(Q = 0,025080 \)	24
Factor “A” para \(Q = 0,028500 \)	25
Factor “A” para \(Q = 0,030962 \)	26

| CAPITULO IV | |
| Exploración de gravas auríferas realizada en Ría Blanco, Famatina (provincia de La Rioja) | 27 |

| CAPITULO V | |
| Resumen de los materiales necesarios para hacer una exploración aurífera en placeres y aluviones | 35 |

CAPITULO VI	
Exploración de placeres auríferos de pequeño espesor	38
Equipo a mano para perforar	38

| CAPITULO VII | |
| Forma de hacer un informe sobre exploración de un placer aurífero | 41 |
1. Vista del río Blanco, en el lugar donde se efectuaron las perforaciones.

2. El mogote de río Blanco. La máquina “Keystone” perforando el pozo No. 2.
1. El río Blanco, al pie del mogote del mismo nombre. Caudal 100 l/s, el día 1º.VIII.1932 (estiaje).

2. Transportando la máquina perforadora en el lecho del río Blanco.
1. Trabajando un día de nevada.

2. Trabajando un día de nevada.

ING. CARLOS G. BRAVO - Exploración de placeres auríferos - 1934.
1. Personal empleado, al pie de la máquina (perforadores y lavadores).

2. Antes de hincar la cañería de entubación, el Jefe de Sondeo marca con tiza distancias espaciadas cada 305 mm. a partir del filo del zapato.
1. **Al iniciar la hinca de la cañería**, el Ayudante, trepado a la cabria de la máquina, guía con las manos la herramienta de perforación.

2. **Hincando la cañería**, a fuerza de golpes, usando la barra maestra con una grampa golpeadora.

ING. CARLOS G. BRAVO - Exploración de placeres suriferos - 1934.
1. Volcando el contenido de la cuchara en el canal de madera. Puede observarse al lado del pozo, un peón con un balde, que ha lavado el cable y la cuchara, antes de sacar ésta del pozo.

2. Lavando las muestras. Dos peones lavan las gravas en el “Rocker” y uno (detrás del barril) está lavando una muestra con un plato americano.
1. **Terminada una perforación, se sacan los caños. Sacando los caños con gatos hidráulicos y golpeando hacia arriba con una tijera.**

2. **Sacando los caños de una perforación terminada, empleando gatos a tornillos.**
1. Laboratorio químico de campaña, para ensayar la cantidad de oro sacada de cada pozo.

2. Trabajando en la perforación "Río Blanco" No 2.
2. El Administrador de las minas de Río Blanco, lavando arenas auríferas, con la "poruña".

1. Vista de la margen derecha del Río Blanco, frente al lugar donde se ejecutaron las perforaciones. En ella se ven las areniscas antiguas (inclinadas), cubiertas por gravas recientes (horizontales).
Río Blanco (Famatina), prov. de La Rioja.
Areniscas antiguas, cubiertas por gravas recientes.
EQUIPO PERFORADOR PORTATIL, A MANO, «BANCA»

1 Cabeza para sacar los caños
2 Plataforma
3 Cabeza portá plataform
5 Caños de entubación
6 Zapato para
6b largo
9 Llave doble para hacer girar los caños
11 Llave simple para caños
14 Llave para barra de sondeo
15 Barra de sondeo
16 Lanza para barra de sondeo
17 Elevador para barra de sondeo
18 Horqueta para barra de sondeo
19 Trépano tipo hacha
20 " cruz
20b " con aleta
21 Mecha espiral corta
22 " larga
24 Churra a lengüeta, corta
25 " larga
27 Churra a bola, con zapato liso
29 Zapato para churra, con espiral
30 Bola para válvula
32 Zapato liso para churra
33 Granera a mordaza automática
34 Soporte para sacar caños
39 Zapato dentado para caños
40 " cuchara
43 Llave a cadena
44 Cadena con argolla para sacar caños
54 Zapato válvula a charnela
55 Guinche a resorte
56 Tijera para barra de sondeo
57 Cabeza golpeadora para caños
60 Zapato a trépano para churra
61 Bomba de arena
62 Zapato de churra para pesca
63 Gancho de suerte
65 Gato a tornillo para caños
63 Grampa a tornillo para caños
66b Llave para idem.
67 Llave para zapato de churra
68 Elevador para barra de sondeo
1. Colocando la plataforma del equipo "Banca".

2. Hincando la cañería y haciéndola rotar mediante dos obreros.
1. Hincando la cañería y haciéndola rotar mediante la fuerza de un caballo.

2. Sacando la cañería, una vez terminada la perforación.
CANAL DE MADERA PARA LA DESACARGA DE LA BOMBA DE ARENA

Escala 1:100

Ing. Carlos O. Bravo. "Exploración de placas auríferas." 1933
EXPLORACION DE ARENAS METALIFERAS

PARTE DE PERFORACION

Provincia de Formación
- **La Rioja**
- Pozo N° 3

Corte: Rio Blanco
- Línea N° 7

Ubicación del trabajo
- Mogote Rio Blanco Nivel 0,000 m

<table>
<thead>
<tr>
<th>Fecha y hora</th>
<th>Profundidad</th>
<th>Testigo</th>
<th>Muestras de Los Terrenos</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>0'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>5'</td>
<td></td>
<td>A + G + G</td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>5'</td>
<td></td>
<td>A + G + G</td>
<td>Testigo no medido</td>
</tr>
<tr>
<td>15:00</td>
<td>5'</td>
<td></td>
<td>A + G + G</td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>5'</td>
<td></td>
<td>A + G + G</td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>5'</td>
<td></td>
<td>A + G + G</td>
<td>Testigo no medido</td>
</tr>
<tr>
<td>15:00</td>
<td>5'</td>
<td></td>
<td>A + G + G</td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>5'</td>
<td></td>
<td>A + G + G</td>
<td>Testigo no medido</td>
</tr>
<tr>
<td>15:00</td>
<td>5'</td>
<td></td>
<td>A + G + G</td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>5'</td>
<td></td>
<td>A + G + G</td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>5'</td>
<td></td>
<td>A + G + G</td>
<td></td>
</tr>
</tbody>
</table>

Notas:
- No se recolectó testigo
- Testigo no medido

ABREVIACIONES
- He: Huelo
- Fi: Fino
- Al: Albino
- A: Arcilla
- G: Grava
- M: Muy
- P: Pizarra
- M: Pizarra
- M: Muy
- A: Azufre
- B: Bajo
- S: Suelo
- G: Grava
- M: Muy
- Al: Albino
- A: Arcilla
- G: Grava
- M: Muy
- P: Pizarra
- S: Suelo
- A: Azufre
- B: Bajo
- S: Suelo

Turno de día:
- Jefe
- Ayudante

Turno de noche:
- Jefe
- Ayudante
Desde 53' la grava fue extremadamente dura, y desde 54' se trabajó perforando adelante del zapato, pie por pie.

A los 57' hubo una entrada de relleno extraordinaria, y el nivel del agua que permanecía en 3' bajo el nivel del suelo, derramó del caño de perforación a una altura de 2' sobre el suelo, por lo que se agregó otro caño para contrarrestar la presión del agua; a la mañana siguiente el nivel piezométrico del agua en el caño era de 3' sobre el nivel del suelo, es decir que hubo una subida total de 6'.

Para un volumen de testigo de 0.27 pie cúbico por pie de perforación y para un valor del oro de 0.06 centavos de dólar americano por miligramo, los valores son:

Por yarda cúbica: 2.064 centavos americanos
Por metro cúbico: 2.7

Río Blanco (Famatina), Julio 8/932.

Carlos G. Bravo
Inspector de Perforaciones
EXPLORACION DE ARENAS METALIFERAS

PARTE DE PERFORACION

Provincia o Territorio: La Rioja
Pozo No.: 3
Calle: Río Blanco
Línea No.: 1
Ubicación del trabajo: Mogote Río Blanco
Nivel: 0.00 m.

<table>
<thead>
<tr>
<th>Fecha y hora</th>
<th>Profundidad</th>
<th>Muestra de los terrenos</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-15 53'</td>
<td>0.480 37'</td>
<td>Alba baya arencoja</td>
<td>Otras para perforar (hecho)</td>
</tr>
<tr>
<td>12-00 54'</td>
<td>0.230 20'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-10 56'</td>
<td>0.202 18'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-50 58'</td>
<td>0.147 17'</td>
<td>Alba baya arencoja</td>
<td></td>
</tr>
<tr>
<td>8-00 60'</td>
<td>0.186 16'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-20 61'</td>
<td>0.333 36'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-30 61'</td>
<td>0.280 18'</td>
<td>Are amarilla gris</td>
<td></td>
</tr>
</tbody>
</table>

Lecho en gravas terciarias

Profundidad hasta el lecho: 53 (?)
Fecha comienzo: 30 de junio de 1932
Con cantidad de días 152 mm 21.35 m

Profundidad de la cebega: 8 (?)
Fecha terminación: 8 julio
Sin cantidad m

Espesor del lecho: 5 m
Progreso por turno: 130 m m

Espesor de los gravas: 1.50 m
Maquinaria perforadora: Keystone N3

<table>
<thead>
<tr>
<th>Diametro</th>
<th>Desde</th>
<th>Hasta</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 m m</td>
<td>150 m</td>
<td>21.35 m</td>
</tr>
</tbody>
</table>

ABREVIACIONES:
Helado: F Fino: A Algo: C Composto: R. Aouña: Jefe
Detritus: M Mediano: S Suelta: Gr Grava:
Estadística de los trabajos

<table>
<thead>
<tr>
<th>PERFORACIÓN</th>
<th>ENSEÑO</th>
<th>DIAM. ANTERIORE DE LOS ROQUES EN CM</th>
<th>LARG. ANTERIOR EN M</th>
<th>AUMENTO EN EL DÍA EN M</th>
<th>LARG. ACTUAL EN M</th>
<th>PROFUNDIDAD DEL ESPEJO M</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>152</td>
<td>9.59</td>
<td>4.66</td>
<td>14.25</td>
<td>12.41</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distancia desde el nivel del líquido hasta el fondo de tierra</th>
<th>HORAS</th>
<th>MÉTROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL DÍA DE LOS TRABAJOS EN EL TURNO ANTERIOR</td>
<td>17</td>
<td>0.15</td>
</tr>
<tr>
<td>ANTES DE EMPEZAR LOS TRABAJOS</td>
<td>7</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Trabajos hechos durante el único turno

<table>
<thead>
<tr>
<th>NÚMERO HASTA</th>
<th>TRABAJOS HECHOS DURANTE EL ÚNICO TURNO</th>
<th>INDICACIONES GENERALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Entubando un caño, golpeando la columna de 152/169 mm Ø y sacando las muestras de terreno. Lavado de las muestras de terreno.</td>
<td>Descubierta la 12ª capa de agua dulce a 0.30 m. Nivel piezométrico positivo de... m. Conducto expuesto... 1/2 h a... m del suelo... m. Se encontró agua a la profundidad de... m. El agua de inyección de vuelta aumenta a... litros.</td>
</tr>
<tr>
<td>17</td>
<td>Entubando dos caños, golpeando la columna de 152/169 mm Ø y sacando las muestras de terreno. Lavado de las muestras de terreno.</td>
<td>No se trabaja en la perforación por...</td>
</tr>
</tbody>
</table>

Consumidos durante el turno

<table>
<thead>
<tr>
<th>AGUA 1.000 l. Lata</th>
<th>2. Carbón</th>
<th>1. Nafta 10 l. gasoil</th>
<th>1. Fueloil</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Aceite máquina 1 l.</th>
<th>Aceite cilíndro 1 l.</th>
<th>Graza mineral 1 kg.</th>
<th>Graza animal</th>
</tr>
</thead>
</table>

R. Aquila.

JEFE DEL CAMPAMENTO
<table>
<thead>
<tr>
<th>NÚMERO</th>
<th>HÁBIL</th>
<th>CHAPA</th>
<th>PERSONAL</th>
<th>FECHA</th>
<th>P. EG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>11:70</td>
<td>11:70</td>
<td>Bruno</td>
<td>5</td>
<td>Arena gruesa, con grava, arena y grava media</td>
</tr>
</tbody>
</table>
Resumen de las perforaciones de explotación aurífera en Río Blanco

(Pamatina) La Rioja

<table>
<thead>
<tr>
<th>Línea No 1</th>
<th>Perforación No 1</th>
<th>Perforación No 2</th>
<th>Perforación No 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidad con entubación</td>
<td>20,429 m (67')</td>
<td>18,1858 m (59.8")</td>
<td>18,287 m (60')</td>
</tr>
<tr>
<td>Profundidad sin entubación</td>
<td>0,914 m (3')</td>
<td>-</td>
<td>0,3047 m (1')</td>
</tr>
<tr>
<td>Profundidad total</td>
<td>21,335 m (70')</td>
<td>18,1858 m (59.8")</td>
<td>18,5921 m (61')</td>
</tr>
<tr>
<td>Profundidad del lecho (Bed-Rock)</td>
<td>12,4963 m (41')</td>
<td>12,8011 m (42')</td>
<td>12,8011 m (42')</td>
</tr>
<tr>
<td>Oro sacado de cada perforación</td>
<td>1.4 mg</td>
<td>4.2 mg</td>
<td>21 mg</td>
</tr>
<tr>
<td>Valor del oro por m3</td>
<td>0.27 centavos de dólar USA/m3</td>
<td>0.55 centavos de dólar USA/m3</td>
<td>2.7 centavos de dólar USA/m3</td>
</tr>
</tbody>
</table>

El kilogramo de oro se ha tomado a 600 dólares el kilogramo. Como factor de entrada de muestra (cora) en la perforación se tomó 0.27 pie cúbico por pie de cantería. Los pozos se hicieron sobre una misma línea transversal al río Blanco, al pie del mogote de R.Blanco.

Buenos Aires, agosto 28 de 1933.

Ing. Carlos O. Bravo. "Exploración de placeres auríferos". 1933
RIO BLANCO AL PIE DEL MOGOTE DE RIO BLANCO

Caudal del rio blanco el día 17/11/32: 300 m³ por hora (estación)

Escala 1: 500

Ing. Carlos G. Bravo "Exploración de placas auríferas" 1933
PERFIL GEOLOGICO TRANSVERSAL DEL VALLE DEL RIO BLANCO
AL PIE DEL MOGOTE DEL RIO BLANCO

Referencias

Rocas Cristalinas
Roca deslizada
Rocosos de Derribo
Rodados/Flanqueo
Actuado

'ESCALA:
Horizontal 1: 4,000 Vertical 1: 1,000