MANIFESTACIONES DE MINERALES DE COBRE Y PLomo
CADECERA A TEMBRAO, CONTROL LITOLÓGICO HOJA RIO NEGRO

por

FERNANDO I. SESANA

1971
PROLOGO

Este trabajo representa la primera información obtenida de mi campaña en la zona de Los Berros, Tembrao y Yami-
nué, entre los meses de octubre a diciembre de 1970.

Por su aspecto mineralógico y con miras al apro-
vechamiento económico, hemos elegido la zona del Tembrao para ini-
ciar esta información.

Agradezco la colaboración en el campo de mi ayu-
dante Técnico Minero Carlos Barrientes, sobre todo por su gran con-
tracción al trabajo.

Al doctor Eduardo J. Methol por su asesoramien-
to geológico y por la fotogeología de la zona estudiada.

A los señores analistas de la División Investi-
gaciones por los análisis químicos y al señor dibujante Franca,
por la confección de los planos del muestreo geoquímico.

Además, dejo constancia de mi reconocimiento pa-
ra todos mis colegas que en una u otra forma prestaron su colabo-
ración en este trabajo.
RESUMEN

La zona considerada se halla 70 kilómetros al sur-este de Valcheta, en el área de influencia del pueblo Tafuro, hallándose las mineralizaciones más importantes a sólo 14 kilómetros de ese pueblo y sobre la margen izquierda del arroyo homónimo.

Desde el punto de vista litológico, la zona estudiada se halla compuesta principalmente por vulcanitas ácidas a mesosilicicás, comprobándose un predominio de riolitas con intercalaciones de sus tobas.

En la fracción sur, se nota un predominio de rioclasitas, observándose que hacia el oeste, dichas vulcanitas aparecen con intercalaciones de andesitas; en cambio, al sur-este desaparecen las andesitas y afloran a 5 km al este del puesto de Vacareza, las intrusiones de granodiorita y sus pírrfitas. Se advierte un predominio de éstas, hacia la parte oriental de la zona.

Una característica bastante uniforme en esta región, es la presencia de diacasas, en general con rumbos norte-sur y este-oeste. De acuerdo con la intensidad de este diacrasamiento, se forman lajas en las rielitas, cuyo tamaño es propicio para su utilización en la construcción.

La zona de mayor mineralización se encuentra a un kilómetro al NE del Pto. de Vacareza constituida primordialmente por tobas con un grado variable de silicificación y propilítitización.
La zona de mayor silicificación concuerda con el mayor grado de mineralización de galena y malaquita observado en la trinchera abierta, con rumbo N 80 W, a su vez son concordantes a esta dirección, los valores anómalos de plomo, cobre, zinc y manganeso, de forma tal que estos caracteres serían indicadores para considerar una zona de emplazamiento de falla, por lo que se propagaron las soluciones mineralizadas a través de las tobas.

Otra dirección de falla probable estaría determinada por el emplazamiento de una brecha de cuarzo y manganeso de rumbo S 70 W; además y a pocos metros al oeste de la labor de plomo fue posible observar una veta de manganeso, calcita y cuarzo que con rumbo N 30 W, nos señalaría la dirección de otra fractura.

También podemos agregar, la presencia de otra manifestación de cobre y plomo, ligeramente al SE de la trinchera y cercana al crujero con la veta de manganeso y calcita.

La mineralización de plomo y cobre es de origen mesotermal y se propaga preferentemente por zonas de debilidad en la toba; casi siempre la mineralización está acompañada por silicificación, la que consideramos en gran parte, proveniente del mismo hidrotermalismo.

Caliza primaria, se observa a 2000 m. al SW de la labor de plomo; otra caliza con impregnación de malaquita la hallamos al oeste de la entrada del Pte. de Marcelino Iñiguez. Además, se localiza calcita en Tembraco, arriba del Pte. de Bernabé.
RECOMENDACIONES

En la zona mineralizada por plomo, cobre, zinc y manganeso se aconseja densificar el muestreo realizado, extrayendo muestras cada 30 m. para determinar el grado de diseminación de la mineralización en la toba.

Fuera de la superficie hasta ahora muestreada, extender, a partir de lo actuado, el muestreo de roca, con una periodicidad de 100 m a 2000 m. hacia cada lado de los límites actuales. Sobre la red de drenaje, proceder a la extracción de sedimentos finos con una frecuencia de 250 m. desde los límites de la meseta de Somuncurá, 10 km aguas abajo de los recolectores principales.

De acuerdo con los resultados de estos trabajos, realizar labores de trincheras y perforaciones para vincular y explorar las distintas mineralizaciones detectadas, y conocer su comportamiento en profundidad.
FOTOGEOLOGÍA DE LA REGIÓN DEL TEMBRAO

REFERENCIAS

<table>
<thead>
<tr>
<th>Código</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bto.</td>
<td>Basalto</td>
</tr>
<tr>
<td>C/P</td>
<td>Cuartario / Riolitas</td>
</tr>
<tr>
<td>Vp.</td>
<td>Pórfiro Riodacíticos y Granodioríticos</td>
</tr>
<tr>
<td>Al.</td>
<td>Aluvional</td>
</tr>
<tr>
<td>C</td>
<td>Cuartario en general (derrubio)</td>
</tr>
<tr>
<td>P.</td>
<td>Riolitas</td>
</tr>
<tr>
<td>Vm.</td>
<td>Andesitas</td>
</tr>
<tr>
<td>Vt.</td>
<td>Tobas</td>
</tr>
<tr>
<td>V</td>
<td>Vulcanita no diferenciada</td>
</tr>
<tr>
<td>S</td>
<td>Sedimentitas cineríticas</td>
</tr>
</tbody>
</table>

Contactos

<table>
<thead>
<tr>
<th>Código</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Borda basáltica</td>
</tr>
<tr>
<td></td>
<td>Falla, fractura</td>
</tr>
<tr>
<td></td>
<td>Diaclasa</td>
</tr>
<tr>
<td></td>
<td>Prospección geoquímica</td>
</tr>
</tbody>
</table>

Esc. 1:500000 (aprox.)
UBICACIÓN. VIAS DE ACCESO

Esta zona se halla 70 km. al sur del pueblo de Valcheta por el camino que pasa por Pajalta, no recomendable por su estado sumamente pesado, debido a que en parte, fue labrado sobre rocas volcánicas.

Mejor vía de acceso, es pasando desde Valcheta por Aguada Cecilia tomando la ruta que conduce a Sierras de Pailén, a 30 km se dobla a la derecha, hasta llegar al Rincón del Tembrao; de la última localidad distante de esta forma 110 km. de Valcheta ó 90 km. de Aguada Cecilio.

Esta población cuenta con agua potable y precarias provisiones de comestibles, los cuales deben proveerse en Valcheta. Carne, leña y agua para los animales puede hallarse en distintas zonas de trabajo, caso específico en la zona mineralizada.

Aproximadamente a 14 km antes de dicha población, se encuentran las manifestaciones minerales de las que nos ocuparemos en esta información.

GENERALIDADES GEOLÓGICAS

Desde las nacientes del Aº Tembrao hasta aproximadamente un kilómetro al oeste de la manifestación de plomo, observamos una amplia difusión de rocas riolíticas que constituyen la litología principal de la zona, estas rocas muestran una coloración pardo rosado bastante uniforme, de textura porfirica y pasta afanítica densa (n° 64).
Esta formación riolítica se halla afectada por un intenso diaclasamiento en dos direcciones, aproximadamente este-oeste y norte-sur, como resultado del mismo, esta vulcanita se ha partido en lajas de espesores variables, las que son utilizadas como material de construcción por los pobladores de la zona.

La muestra más representativa de las proximidades del Tembrao está indicada en la nº 54bis, es una riolita de color pardo con tintes grises y morados, de textura poco porfirica y pasta gramosa fina.

Si consideramos una línea imaginaria que coincida aproximadamente con la picada que une al Tembrao con Aguada Cecilio, hasta la latitud del Pto. de Vacareza, podemos establecer una zona de unos 300 m de ancho en la que se advierte un contacto entre la riolita ubicada al norte de la misma y la riodacita (nº48) de los alrededores de la estancia Vacareza ubicada al sur de dicha zona.

Aproximadamente a un kilómetro al SW del afloramiento de plomo y cobre, aflora una (nº 63) andesita hornblendífera alterada, la que se propagaría a continuación de las riodacitas, hacia el Rincón del Tembrao. Se trata de una roca de color gris, con tonalidad algo oscura, de textura porfirica, con abundantes fenocristales poco desarrollados de feldespatos.

No descartamos la existencia de una alternancia, entre las efusiones andesíticas y riodacíticas que se extienden hacia el oeste.
Tanto estas vulcanitas, como las que se propagan hacia el este del Pto. de Vacareza, y las tobas que constituyen la litología de la zona mineralizada, son muy posiblemente de edad Mesozoica; no encontrándose en esta zona, manifestaciones de rocas graníticas. A estas las hallaremos recién a 5 kilómetros al este del Pto. Vacareza, lugar donde situamos un pequeño afloramiento representado por el pórfiro granodiorítico (N° 57). Al este de esta manifestación y al oeste de la picada que va al Pto. de Marcelino Illanqueleo y antes de las primeras estribaciones de la meseta de Somuncurá, aflora la granodiorita porfiroide (N° 59) y hacia el este de la misma, observamos una extensa difusión de sus pórfiros (N° 62).

Por encima del pórfiro granodiorítico (N° 57) se extiende cubriéndolo, la riolita (N° 58), a esta roca la conectamos con las riolitas de los alrededores de la estancia de Vacareza.

En la zona de contacto de la granodiorita porfiroide y el pórfiro granodiorítico (N° 61) vemos una veta de calcita de 30 cm. de ancho con impregnación de malaquita, ello aparece en la parte sur del pórfiro granodiorítico, y su verificación puede hacerse a través de un largo de 30 m; su rumbo es apr aproximadamente NS.

Estas rocas graníticas se encuentran cubiertas por un pequeño mantto de dos metros de espesor de areniscas tobáceas sobre el cual se levanta el farellón de la meseta de Somuncurá.
ÁREA MINERALIZADA

Aproximadamente a un kilómetro al NE del Pto. de Vacareza situado a un centenar de metros de la picada al Tembrao, podemos establecer un área de mineralización con formación de minerales de cobre, plomo, zinc, manganeso y calcio.

En esta fracción de terreno y como un ensayo de prospección geoquímica, se procedió a la extracción de muestras sobre las rocas que constituyen un área aproximadamente de 36,000 m².

El motivo de este muestreo, fue tratar de establecer ante la presencia de minerales de cobre, plomo y manganeso detectados visualmente, su posible diseminación en la roca del lugar, en la que no fuera corroborada su presencia a "prima Facie".

El apartarse del método corriente de muestrear sedimentos relacionados con la red de drenaje del lugar, fue para establecer una relación entre los valores obtenidos de los análisis de sedimentos y los de las rocas.

Con ello pretendemos demostrar lo inconveniente del método para muestrear sedimentos en zonas áridas que, a su vez se ven sometidas por precipitaciones torrenciales de tal magnitud, que, frecuentemente hacen variar el curso de pequeños arroyos. Sedimentos expuestos a estos factores climáticos y provenientes por lo general de rocas graníticas y volcánicas, se encuentran muy pocoen compuestos por arcilla y fracción limosa, tal hecho convierte un sedimento en composición francamente
arenosa y carente de medios capaces de fijar cationes en soluciones.

En esta zona, como en la de Los Berros, que trataremos en otra oportunidad, la diferencia entre ambos métodos de extracción fue muy notable, acusando mayores porcentajes en el contenido de los elementos analizados, las muestras constituidas por rocas.

Además nos pareció interesante realizar un muestreo sobre la roca del lugar, porque en las cercanías de una trinchera de exploración realizada por una comisión del Departamento de Minería en 1963, nos fue posible individualizar una brecha de cuarzo con cemento de minerales de manganeso con rumbo S 70 W, cuya longitud puede reconocerse en forma intermitente en una distancia de 300 m. aproximadamente, con un ancho variable de cinco metros.

Asimismo, pudimos localizar una veta de pirolusita, psilomelano, cuarzo y calcita, a 100 m. de la trinchera; emplazada con un rumbo N 30 W; como la manifestación anterior, no había sido enunciada anteriormente. Continuando con nuestras observaciones, hallamos otra manifestación de plomo y cobre en ambiente de tobas. Esta se encuentra aproximadamente a 50 m de la antes dicha labor, con un rumbo S 64 W y corresponde a la muestra (N° 63). Suponemos que esta mineralización llega a tener un rumbo N 32 W es decir, que pueda constituir una prolongación de la veta de manganeso y calcita, de forma tal que estos rellenos se emplazarían en una zona de debilidad que nos permitiría
suponer la existencia de una falla de rumbo N 30 W.

Un análisis sobre la muestra no 68 arrojó el siguiente resultado:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobre (Cu)</td>
<td>1,9 %</td>
</tr>
<tr>
<td>Plomo (Pb)</td>
<td>9,3 %</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>0,4 %</td>
</tr>
<tr>
<td>Plata (Ag)</td>
<td>10 g/tn</td>
</tr>
</tbody>
</table>

Dos análisis realizados en la parte mineralizada de la trinchera dieron este resultado:

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Porcentaje</th>
<th>M. N° 51</th>
<th>M. N° 52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plomo (Pb)</td>
<td>10,6 %</td>
<td>15,5 %</td>
<td></td>
</tr>
<tr>
<td>Cobre (Cu)</td>
<td>7,4 %</td>
<td>1,7 %</td>
<td></td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>No rev.</td>
<td>1,4 %</td>
<td></td>
</tr>
<tr>
<td>Plata (Ag)</td>
<td>30 g/tn</td>
<td>10 g/tn</td>
<td></td>
</tr>
</tbody>
</table>

Algunas muestras de manganeso dieron valores que oscilaron del 2 al 10 %; para determinar el porcentaje de manganeso en sus asociaciones, es necesario realizar un muestreo racional de las vetas, para esos trabajos habría que contar con barrenos y explosivos para destaparlas; elementos que no contábamos en las circunstancias en que visitamos el lugar.

Como veremos, las anomalías en los análisis geoquímicos de rocas por cobre, plomo, zinc, y manganeso, son bastante uniformes, y siguiendo la dirección de la trinchera, es decir N 80 W, puede determinarse un rumbo de mineralización con-
cordante con esa dirección.

Para los cationes Cu - Pb - Zn - Mn - Mo, los
valores de expresan en partes por millón y para la Ag en gramos
por toneladas.

Hacemos notar que no se vuelcan los valores de
Molibdeno y Plata en el plano de muestreo por ser los mismos
insignificantes.

Por excepción aclaramos que en el punto no 3,
donde el manganeso registra una anomalía de 32.000 ppm se obtiene
para el molibdeno 1.100 ppm.

Estas anomalías además de señalarnos direccio-
nen de mineralización, nos pondría en evidencia rumbos de debi-
lidad por las que se propagaron las soluciones mineralizadoras
y que podrían tratarse de fallas.

El muestreo en sí, consistió en extraer esquir-
las de rocas con una frecuencia de 100m. La muestra no 1 se ex-
trajo exactamente a esa distancia con dirección este, de la trin-
chera de plomo y cobre.

A continuación transcribimos los resultados de
análisis geocúmicos obtenidos en las inmediaciones del Ptº. de
Vacareza.
Análisis químico de trazas

<table>
<thead>
<tr>
<th>Nuestra</th>
<th>Método utilizado</th>
<th>Cu ppm</th>
<th>Pb ppm</th>
<th>Zn ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Geoquímica</td>
<td>60</td>
<td>1200</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>60</td>
<td>580</td>
<td>350</td>
</tr>
<tr>
<td>2bis</td>
<td>"</td>
<td>210</td>
<td>11500</td>
<td>2300</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>2000</td>
<td>4000</td>
<td>12000</td>
</tr>
<tr>
<td>5</td>
<td>"</td>
<td>30</td>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>6</td>
<td>"</td>
<td>40</td>
<td>50</td>
<td>400</td>
</tr>
<tr>
<td>7</td>
<td>"</td>
<td>30</td>
<td>70</td>
<td>140</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>40</td>
<td>660</td>
<td>170</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>70</td>
<td>1300</td>
<td>800</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td>40</td>
<td>50</td>
<td>700</td>
</tr>
<tr>
<td>11</td>
<td>"</td>
<td>20</td>
<td>70</td>
<td>120</td>
</tr>
<tr>
<td>12</td>
<td>"</td>
<td>80</td>
<td>270</td>
<td>180</td>
</tr>
<tr>
<td>13</td>
<td>"</td>
<td>20</td>
<td>30</td>
<td>280</td>
</tr>
<tr>
<td>14</td>
<td>"</td>
<td>20</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>15</td>
<td>"</td>
<td>170</td>
<td>4200</td>
<td>1600</td>
</tr>
<tr>
<td>16</td>
<td>"</td>
<td>50</td>
<td>90</td>
<td>130</td>
</tr>
<tr>
<td>17</td>
<td>"</td>
<td>20</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>18</td>
<td>"</td>
<td>60</td>
<td>50</td>
<td>170</td>
</tr>
<tr>
<td>19</td>
<td>"</td>
<td>20</td>
<td>140</td>
<td>900</td>
</tr>
<tr>
<td>20</td>
<td>"</td>
<td>80</td>
<td>240</td>
<td>190</td>
</tr>
<tr>
<td>21</td>
<td>"</td>
<td>1200</td>
<td>90</td>
<td>1900</td>
</tr>
<tr>
<td>22</td>
<td>"</td>
<td>500</td>
<td>25 00</td>
<td>3900</td>
</tr>
<tr>
<td>23</td>
<td>"</td>
<td>20</td>
<td>80</td>
<td>170</td>
</tr>
<tr>
<td>24</td>
<td>"</td>
<td>40</td>
<td>330</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>70</td>
<td>1200</td>
<td>340</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>25bis</td>
<td>450</td>
<td>7000</td>
<td>5500</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1400</td>
<td>120</td>
<td>3800</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>310</td>
<td>260</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>70</td>
<td>30</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>50</td>
<td>140</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>100</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>100</td>
<td>120</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>50</td>
<td>180</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>60</td>
<td>560</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>170</td>
<td>630</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>40</td>
<td>80</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>40</td>
<td>200</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>240</td>
<td>9600</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>20</td>
<td>100</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>60</td>
<td>80</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>30</td>
<td>60</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>70</td>
<td>50</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>70</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>50</td>
<td>80</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>120</td>
<td>80</td>
<td>2400</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>400</td>
<td>5200</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>40</td>
<td>30</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>60</td>
<td>40</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>130</td>
<td>160</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Muestra</td>
<td>Método utilizado</td>
<td>Mn</td>
<td>Mo</td>
<td>Ag g.t</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----</td>
<td>----</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Geoquímico</td>
<td>1200</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1000</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>2bis</td>
<td></td>
<td>14000</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>32000</td>
<td>1100</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1000</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>200</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>400</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1200</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>3200</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1600</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>400</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>400</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>200</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>600</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>2400</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>600</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>200</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>200</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>200</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>600</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>400</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>1200</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>200</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>2400</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>2200</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>25bis</td>
<td></td>
<td>18000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>4800</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>200</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>400</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>400</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>600</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>800</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>400</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>600</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>1000</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>600</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>800</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>600</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>2800</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>600</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td></td>
<td>400</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>600</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>200</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>400</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>400</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>5600</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td>400</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td>600</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>2400</td>
<td>6,0</td>
<td></td>
</tr>
</tbody>
</table>
LITOLÓGIA DEL ÁREA MUESTREADA

A través de las distintas muestras estudiadas, podemos establecer que el área en cuestión, con una superficie aproximada de 36 Ha., se halla compuesta por tobas, mostrando gran parte de las mismas un avanzado grado de silicificación debido a la acción de procesos hidrotermales; haciéndose ésta más intensa, en las cercanías de la labor de plomo desvaneciéndose, a medida que nos apartamos hacia el sur y el norte de ese lugar. Tanto la silicificación como las variaciones de composición, son transicionales, por cuyo motivo no se marcaron sus límites.

Se pudo establecer que la muestra (N° 56 bis) ubicada a 300 m. al SW de la trinchera, está representada por una toba riolítica propilitizada; la N° 56) a 300 m. al NE de dicha labor, correspondiente al punto (45) del muestreo geoquímico, se trata de otra toba, otro tanto acontece con la (N° 67) ubicada en la zona de mineralización de cobre y plomo, cercana a la veta de manganeso, cuarzo y calcita. Parte de esta toba muestra señales de silicificación secundaria, por tal razón se la debe interpretar como una toba silicificada (N° 67).

La caja de la veta de manganeso es otra toba (N° 51) correspondiente al (P.47) y que con un rumbo N 32 W se propaga con mineralización de malaquita.

En el capítulo correspondiente a "consideraciones petrográficas" se tratarán los caracteres texturales y minerales de todas las rocas pertenecientes a esta zona.
Debemos destacar, las semejanzas texturales y mineralógicas surgidas del estudio de las muestras (No 671), (No 52 – T 39) y (No 51 – T 47).

Estas tobas aparecen morfológicamente en forma de mantos con un rumbo general N 45 W. Dado el grado de erosión, su superficie se encuentra alisada, adquiriendo por tal motivo cierto aspecto de celadas, por la ausencia de rasgos estructurales. Además fuera de esta zona y en sus alrededores a las tobas se las ve intercaladas con riolitas y riodacitas.

En la parte en que la mineralización se hace más representativa, podemos reconocer dentro del material de veta, formado por una toba silificada, una intensa impresinación de malaquita (No 51), además por análisis químico, se pudo establecer la presencia de sulfato de plomo (anglesita).

Separadamente del carbonato y el sulfato, encontramos en forma de nódulos y guías pequeñas e irregulares, galena acompañada por escasa calcopirita. Esta toba muestra efectos cataclásticos avanzados que denotan la propabilidad de que la mineralización se haya emplazado a través de planos de debilidad provocados por diclasas; y falta de rumbo N 80 W.

Por la naturaleza de la mineralización y lo intenso de la silicificación con que está afectada las rocas del lugar, es probable suponer que su proceso genético es de origen mesotermal. A él se debe también la formación de minerales secundarios como sericita, calcita, clorita y epidoto; además la propilitización observada en la toba cercana a la labor.
de plomo y cobre demostraría que la acción hidrotermal ha sido posterior a la depoitsación del material tobaico en cuestión.

Por lo tanto, no estaríamos equivocados si suponemos, una génesis costeña de la silicificación con la formación de los minerales señalados; habla en favor de ello, en que la malaquita y galena se hallan en la zona de mayor contenido silíceo del manto tobaico.

Debido a la pequeña labor en que aflora la galena, es posible ver como la parte que consideramos como “veta” dentro del complejo tobaico, presenta un bastaiento de 45°N.

Con respecto a la zona mineralizada ubicada a 50 m al SW de la trinchería, debemos aclarar que la misma, fue muestreada, por el color rosado verdoso, que indica una anomalía en la coloración de las rocas que constituyen la litología de la zona. Puntualizamos que las muestras analizadas y cuyos resultados fueron volcados anteriormente (N° 68), se extrajeron de una profundidad de 20 cm.

Tanto en el afloramiento que fue destacado, como en la toba manchada por malaquita y óxido de hierro, se advierte además del carbonato de cobre: calcita y epidoto lo que pondría de manifiesto la presencia de minerales típicos de propilitización. Tal transformación proveniente de una descomposición de origen hidrotermal, queda perfectamente localizada al SW del lugar en cuestión (250 m) aproximadamente donde ubicamos la toba riolítica propilitizada (56 bis).

Independientemente al capítulo “Consideraciones Petrográficas” trataremos aquí los caracteres de la toba
alterada y silicificada (No 53) por tratarse de una roca, que si bien puede ser considerada como roca de caja, no escapa a la posibilidad que integre la parte mineralizada por transformación del hidrotermalismo portador de las soluciones de cobre y plomo.

Se trata de una roca de color gris con tono morado, de textura porfírica poco desarrollada, sobre todo porque algunos fenoclástos, sólo se destacan del abundante cemento, por la intensificación del color con relación al gris morado del mismo.

Al microscopio, aparece un cemento abundante que presumiblemente en sus orígenes, ha sido predominante- mente vitreo y que actualmente posee una composición silíce microgranosa de baja birrefringencia, además se reconocen restos de estructuras vitreas desvitrificadas. Como consecuencia de tal proceso, se observa una propagación de masas pequeñas grumosas de naturaleza arcillosa.

Es posible constatar, como el vidrio del cemento, cuando reacciona con los fenoclástos, produce en éstos, efectos corrosivos en sus bordes que pueden llegar a producirles engolfamientos de intensidad variable.

Hay zonas de la textura, en que se aprecia un incremento en la proporción de cuarzo, su disposición nos señala, que parte del mismo, puede provenir de la actividad hidrotermal que originó la mineralización en la zona.

Este cuarzo a veces se resuelve en veni- llas acompañadas por abundante sericita, gran parte de esta mi-
la secundaria, proviene de la descomposición de los clastos de plagioclasis; debido a este reemplazo, es que sus macas se observan con suma dificultad.

Probablemente la silicificación y seriicitización, como la desvitrificación del cemento, tengan su origen en el hidrotermalismo de mediana temperatura que actuaron en la formación de los minerales de plomo y cobre.

Como veremos luego, la silicificación también se hace extensiva a los alrededores de esta manifestación plomo-cuprífera.

Además de los afloramientos minerales de que hiciéramos mención, se necesario agregar la presencia de caliza oscura acompañada de hematita. Esto tiene lugar a 1,800 a 2,000 metros al oeste de la labor de plomo.

Esta caliza se emplaza en ambiente andesítico (N° 63) y aparece en forma de veta angosta, 0,40 m de ancho con rumbo N 45° E e inclinación 45° al W. La caliza rotulada N° 65 A) fue localizada en una trinchera de 5 metros de largo por 3 de ancho.

A 500 m al este de la caliza (N° 65 A) aparece otra veta de 20 m (N° 65 B) de largo por 0,40 m de ancho con rumbo N 75° W. En total puede calcularse que estos afloramientos de caliza primaria abarcan una superficie de 2,000 m aproximadamente. Se trata de una caliza con pequeño contenido de manganeso y hematita. El contenido de carbonato de calcio es de:

| N° 65 A | 83,40 % | Ca CO3 3 |
| N° 65 B | 63,70 % | Ca CO3 3 |
De acuerdo con los caracteres mineralógicos y petrográficos descriptos, sumado el afermamiento de calcita arriba del Pto. Bernabé en el Tembrao, debemos considerar a esta zona con caracteres propios para ser catalogada como un distrito minero, el que por motivos geográficos, podríamos denominarlo "Distrito Tembrao".

CONSIDERACIONES PETROGRÁFICAS Y MINERALÓGICAS

El estudio de un corte pulido perteneciente a una muestra de mineral de plomo de la labor efectuada en el Tembrao, permitió establecer que la mayor parte del mineral opaco, está formado por galena que incluye restos de calcosina cámbica, en forma tal, que denota que la galena es posterior a la calcosina y al cuarto que la acompaña, el que aparece en agregados pavimentosos de bordes dotados de cierto redondeamiento, ello se verifica claramente en los individuos incluidos en la galena.

A su vez, se ve que la calcosina puede encontrarse en guías entrecortadas con leves estrangulamientos en sus cortes recorridos; además es frecuente hallar a la calcosina reemplazada por coevalina, este reemplazo se localiza preferentemente en sus bordes, llegando en algunos casos a ser total. De esta forma es posible hallar dentro de la galena diminutos individuos de coevalina con hábito prismático alargado, los que en una zona, se disponen en fibrillas paralelas siguiendo dos direcciones normales entre sí, aparentemente regidas por un orden estructural...
tural correspondiente al olivaje cúbico de la galena.

Además hallamos hematita en poca cantidad asociada con malaquita, ésta última en masas pequeñas.

La presencia de covelina, nos indica que estaríamos frente a minerales secundarios, pertenecientes a la zona supergénica y que la malaquita nos da la pauta que ya entraron a jugar procesos de oxidación.

No 54 bis

RIOLITA

Procedencia: Tembras

Roca de color pardo con tintes grises y morados, de textura periférica poco marcada.

Microscópicamente es posible constatar una abundancia de fenocristales de cuarzo y ortosa con desarrollo notable; por la frecuencia de los mismos, incrementados por los de oligoclasa media, insertos en una pasta no abundante, comunican a la textura un carácter acentuadamente hipabísal, es decir, con aspecto de pórfiro riolítico.

La pasta, componente determinativo para su clasificación, es de composición vitrocristalina. El vidrio es el integrante principal, aparece casi totalmente cristalizado en un agregado criptocristalino pardo amarillento, dentro de este agregado, se conservan aún minúsculas zonas isotropas.

El carácter más significativo de la pasta, es su notable estructura fluidal que transfiere la condición neta para considerar a la roca como efusiva.

Además del vidrio, entra en su composición
cristalitos pequeños de cuarzo, feldespatos potásico, plagioclases y escasas laminillas de biotita alteradas en óxido de hierro.

Dentro de los fenocristales, el cuarzo es el componente más numeroso, su desarrollo si bien es notable, no alcanza el tamaño de los de ortosa; su hábito es irregular xenomórfico, con tendencia a tomar formas redondeadas. No presenta fracturamientos dignos de mención y su extinción es normal.

La ortosa muestra buen clivaje, xenomorfía, levemente pentítica, contiene inclusiones de cuarzo, se halla descompuesta levemente en un material pulverulento de naturaleza arcillosa.

En menor cantidad y tamaño, aparece olivina; sus macles de ley de albita son escasas e imperfectas debido a la proliferación de inclusiones de calcita provenientes de su descomposición; parte de este carbonato puede ser localizado en la pasta.

El único fémico observado, es biotita, aparece en láminas anchas de escaso desarrollo longitudinal, alterada en óxido de hierro, el que puede disponerse en forma de granos en los planos de clivaje. A veces la biotita muestra una cloritización en forma parcial.

Nº 54

RIOLITA

Procedencia: Entre las nacientes de Tembras y las cercanías de la labor del plomo.

Roca de color pardo oscuro con tonalidades rosadas más claras, de textura porfírica y pasta afanítica densa.
Esta riolita, por sus caracteres texturales y mineralógicos es similar a la No 54 bis. Difiere ligeramente de aquella, en que los fenocristales de ortosa muestran en regular cantidad, parches de albite provenientes de procesos exclutivos.

No 48

RIODACITA

Procedencia: Cercanías de la casa, en la estancia de Vacareza.

Roca de color pardo rosada de textura porfírica, con fenocristales pequeños pero abundantes de feldespato y cuarzo, en menor proporción se observan componentes fónicos.

La textura porfírica queda reflejada en la abundancia de fenocristales de oligoclasa básica y de cuarzo, encontrándose notablemente subordinado a ellos, los correspondientes a feldespato potásico, representado por ortosa, además también hallamos láminas de biotita.

El machado de la oligoclasa en la mayor parte de los fenocristales está sensiblemente afectado por la corrosión y penetración de la pasta. Esta perturbación es sufrida por todos los fenocristales, inclusive los de cuarzo, éstos, muestran un fisuramiento irregular fino, pero notablemente persistente en todos los individuos.

Salvo las inclusiones provenientes del reemplazo por parte de la pasta, la plagioclasa no muestra otras irregularidades.

A excepción de las inclusiones provenientes del reemplazo de la pasta, la plagioclasa no presenta otras a-
nomálicas. Su hábito es tabular neto y sus bordes acentuadamente idiomorfos.

Los reemplazos de la pasta, también son localizados en los individuos de biotita, los que se hallan con descomposición ferruginosa.

El feldespato potásico aparece en poca cantidad como fenocristales, se halla acentuadamente fracturado, en cambio en la pasta es más numeroso y puede encontrarse constituyendo agregados esferulíticos característicos.

La pasta es abundante, con fluididad marcada y parcialmente desvitrificada, además contiene en cantidad microlitas de cuarzo y plagioclasa.

№ 48 bis **RIOLITA**

Procedencia: Tres kilómetros al este del Pto de Vizarrón.

Roca de aspecto similar a la riodacita (№ 48) aunque su color pardo es ligeramente más rojizo.

Si bien las características texturales y mineralógicas son semejantes, se pueden reconocer algunas diferencias fundamentales, por las cuales, a esta roca la consideramos más ácida, dentro del mismo ciclo efusivo.

Aquí el feldespato potásico es abundante como fenocristales y se encuentra representado por sanidina, alcanzando algunos individuos un idiomorfismo notable. Presenta engulfamientos y penetraciones de la pasta, a través de sus figuras.

Los fenocristales de oligoclasa básica, son
con escasos con relación a los de sanidina, su hábito es tabular y aparece ligeramente alterada en material arcilloso; sus mazas son escasas y se perciben en forma borrosa debido a la alteración aludida. Como en el caso de la sanidina, también está penetrada por la pasta.

La biotita, tanto por su desarrollo como por su alteración y frecuencia, presenta los mismos caracteres que en la riodacita No 48.

La pasta es abundante, de estructura fluidal, estableciéndose entre ella y algunos fenocrístales de feldespato, una corona de reacción de bordes difusos.

La composición de la pasta es vitrea, y los procesos de cristalización sólo se hacen presentes en forma parcial.

De acuerdo con la composición mineralógica y su textura, esta roca debería ser clasificada como una trachita, pero teniendo en cuenta la abundante silice amorfa constitutiva de su pasta, que no alcanzó a cristalizar como cuarzo y que por su proporción, ante un análisis químico mediar, gran parte de dicha silice debería ser considerada como cuarzo y, ateniéndonos a la composición litológica de la zona, esta roca es clasificada como rielesita.

No 51 (T 47) TUBA
Procedencia: Roca con disposición de colada de rumbo N 32 W en contacto con la veta de manganeso y calcita (caja de la misma).
Su color es gris claro, de textura granosa fina, densa y muy escasamente porfírica.

Al microscópico se aprecian clastos poco desarrollados en un cemento vítreo casi totalmente devitrificado. La parte más importante de la roca, la constituye el cemento, por su estructura se advierte que en su origen ha sido en su mayor parte de naturaleza vítrea, pero por devitrificación y por aportes hidrotermales de soluciones siliceas, se ha transformado en un agregado microgranoso de cuarzo con algunas formas esferulíticas de calcocia.

En cuanto a la presencia de clastos, debemos aclarar que, además de estar en proporción no abundante, el desarrollo de los mismos es escaso.

Se destacan entre ellos por su cantidad, los de cuarzo, subordinados a éstos encontramos plagioclasas muy pobremente macilada y con incipiente alteración de naturaleza arcillosa.

Tanto los fenoclastos de cuarzo como los de plagioclasa suelen presentar una corona de reacción producida por reemplazo del cemento.

Por último, debemos mencionar la presencia de láminas pequeñas de biotita desferrizadas y alteradas en pista-cita.

No 52 (T 39)

Procedencia: Corresponde al punto (T 39) del muestreo para la prospección geoquímica y aflora en forma de colada de rumbo N 65 W.
Su color es gris claro con tonalidades verdes, de grano fino y textura porfirica, por la presencia de abundantes fenoclastos de reducido tamaño, de color verdoso con brillo vitreo.

Desde el punto de vista textural y mineralógico, presenta los mismos caracteres que la toba No 51.

La única excepción que se puede señalar, es que esta roca, aparecen gramos y masas opacas con formas arborescentes que, observados con luz reflejada dan un color amarillo apagado, lo que nos estaría señalando la presencia de calcepirita.

Esta roca corresponde a la caja de la brecha de cuarzo y manganeso.

No 57

Zona

Procedencia: Zona del crucero de la mineralización de cobre y manganeso con calcita a 50 m al SW de la labor de plomo y cobre; rumbo de visual de este lugar desde la labor, S 64 W.

Esta toba presenta caracteres estructurales y mineralógicos análogos a las tobas No 52 - T 39 y No 51 - T 47.

Es interesante señalar en esta roca, la presencia de masas irregulares de hematita y otro componente opaco de mayor tamaño que ella y que por su color de reflexión lo podríamos considerar como calcepirita, aunque no deberíamos descartar la posibilidad de que la mayor proporción de las masas opacas se hallen compuestas por agregados de óxido de hierro y calcecin.
TUBA SILICIFICADA

Procedencia: Se trata de una variación en sus propiedades macroscópicas de la Toba no 67₁, por lo tanto corresponde a la misma procedencia que aquella.

Roca de color pardo grisáceo con tonalidades violáceas irregulares que alternan con manchas blanquecinas; además se aprecian zonas negras redondeadas. A veces la tonalidad violácea da paso a una coloración rojiza semejante al color que tiene la cuprita.

Bajo la observación microscópica, puede verificarse que se trata de la misma roca que la toba no 67₁, no obstante debemos señalar en esta roca la penetración de finas venillas de cuarzo acompañadas por un mineral opaco. Estos minerales aportados deben ser considerados de origen hidrotermal de acuerdo con su composición y forma de presentarse.

Por reflexión, el mineral opaco, da la impresión de estar cubierto por oxidación limonítica.

De acuerdo con la proximidad de la veta con manganeso, no debe descartarse la posibilidad que el mineral opaco localizado en la roca, se trate en parte, de un mineral de manganeso.

TUBA

Procedencia: Corresponde al punto 45 del muestreo geoquímico.

Roca gris algo oscura con tonalidad verdosa y textura porfírica con abundantes fenocristales blanquecinos y otros menos frecuentes con brillo vitreo de cuarzo; la pasta es microgranosada densa.
Los fenoclastos más representativos por su frecuencia son los de plagioclásica, en general se hallan intemamente reemplazados por sericitas, como consecuencia del hidrotermalismo que afectó la litología del lugar. Esta alteración oblitera sus caracteres ópticos.

En menor proporción, pero con mayor desarrollo, hallamos clastos de cuarzo, no muestra fracturas, con acentuado idiomorfismo en algunos individuos.

En cantidad menor que los componentes citados, aparece ortosa, su desarrollo fluctúa de mediano a grande, aunque nunca llega a tener el tamaño de los individuos de cuarzo.

Biotita desferrizada y alterada en clorita aparece en poca cantidad; su hábito es laminar delgado.

Estos componentes descriptos como fenoclastos, en forma variable se encuentran corroídos por el cemento; dado el avanzado grado de descomposición de la biotita, es el componente que más se ve afectado por la corrosión del cemento.

El cemento es abundante, en parte está integrado por un fino agregado clorítico arcilloso que muestra una estructura vitrea, cristalizada por devitrificación. El resto está formado por plagioclásica sericitizada, feldespató potásico alterado en material arcilloso, y pequeños individuos de cuarzo que también pueden formar parte del mismo.
Roca gris rosada con considerable cantidad de individuos en forma de fenoclastos que se destacan de un cemento poco abundante de grano mediano, en rasgos generales, muestra aspecto de pírfiro. Además por procesos de oxidación esta roca adquiere tonalidades moradas, particularmente en superficie.

Al microscopio se reconoce una textura de naturaleza tobácea cuyo cemento por descomposición ha dado paso a un fino agregado microcristalino de sílice.

Una de las características del cemento, es que contiene masas microcristalinas de composición síliceo-arcillosa con clorita y epidoto y sericita que bien podrían representar parte de los productos provenientes de su descomposición y cristalización.

A excepción del cuarzo, los clastos se ven afectados, o bien por inclusiones ferruginosas, caso de la ortosa ó bien por una avanzada alteración en sericita, calcita y epidoto como sucede con los individuos de plagioclasa.

La biotita se encuentra desferrizada, dando origen a moscovita secundaria, ó reemplazada por pistacita, clorita y óxido de hierro. Estos productos de descomposición representan una propilitización como consecuencia del hidrotermalismo que afectó buena parte de la zona que nos ocupa en este trabajo, y que bien puede ser el causante de la silicificación del cemento en todos los casos estudiados, ya que como hemos visto, el mismo, aparece transformado en una masa sílicea microcristalina.

Muestra nº 49 TOBA VITREA ALTERADA Y SILIFICADA

Procedencia: Caja correspondiente a la labor de poca...
pared sur de la misma.

Roca gris clara, en fractura fresca, con textura porfírica. En superficie en cambio, por efectos de su descomposición, adquiere por oxidación de los componentes férricos, tonalidades rojizas; así también es posible ver manchas de color verdoso que denotan la presencia de epidoto.

La textura nos presenta una masa vitrea fluidal, totalmente devitrificada y transformada en un agregado microcristalino silíceo, en él se reconocen trazas vitreas características a pesar de haber cambiado su estado amorfo a cristalino.

Son características los clastos angulosos a subangulosos de cuarzo, los que muestran sus bordes ligeramente corroídos por la reacción con la sílice del cemento.

Litoclastos cuarzosos y ferruginosos con sus bordes poco afectados aparecen en poca cantidad, los mismos, por sus caracteres texturales parece que corresponden a fragmentos de pasta de pórphiro.

Son escasos los clastos de plagioclasa, se encuentran con un amplio reemplazo silíceo que abarca la mayor parte de su superficie.

Restos de biotita desferrizizada y alterada en óxido de hierro, aparecen en hojuelas diseminadas en regular cantidad, o bien en grupos de varias láminas. En cualquiera de los casos, la biotita conserva relictos de pleocrosis.

Además se localizan guías irregulares de cuarzo que han penetrado en la toba; asimismo y en forma modular y no de guías, se encuentra calcedonia con su hábito característico.

Algunas de las fisuras aparecen rellenadas por
material ferruginoso.

Muestra nº 51
MINERALIZACIÓN DE CUEPE

Procedencia: Labor de plomo correspondiente al Tembrac.

En la muestra No 49 vimos los caracteres correspondientes a la caja de la parte mineralizada de la trinchera; la parte mineralizada, poco difiere de la caja propiamente dicha, sólo notamos una mayor proporción de sílice y una impresión de malaquita bastante intensa, de tal manera podemos ver que la mineralización se encuentra localizada en la toba que ha recibido mayor aporte sílico, el que considerábamos de origen hidrotermal.

Parte del cobre proviene de la malaquita y parte del plomo, además de la galena, debemos buscarlo en anhidrita diseminada en la toba. Cálculos analíticos nos revelan que el plomo puede encontrarse de esa manera en la toba, es decir, como sulfato además de hallarse como sulfuro.

La toba que ocupa el veta, muestra efectos cataclásticos avanzados los que pondrían en evidencia la posibilidad que la mineralización se haya propagado en una zona de falla de rumbo N 80 W, como lo atestiguan los valores analíticos arrojados en las rocas del muestreo geoquímico.

Además, recordamos que en el estudio calco- gráfico de una muestra de galena perteneciente a esta mineralización, se pudo individualizar calcosina y cevelina.

Muestra No 63
ANDESITA JERNELENDIFERA ALTERADA

Procedencia: 500 m. al SW de la labor de plomo; esta roca se
propaga hacia el Tembrao, entre las rieaditas y las riolitas.

Roca gris oscura con tonalidad levemente verde, de textura porfirica con abundantes fenocristales poco desarrollados de feldespatos.

Al microscopio, se reconoce una pasta abundante parcialmente fluidal, de naturaleza vitrea, totalmente devitrificada; entre los productos que se pueden reconocer de su cristalización, encontramos clorita, feldespato, escasa sílice e importantes masas de composición arcillosa.

Los fenocristales se hallan compuestos en su mayoría por plagioclasa alterada en calcita y epidoto y sericita; este tipo de alteración pone en evidencia un reemplazo propilítico de origen hidrotermal.

Debido a esta descomposición de los cristales de plagioclasa, es sumamente dificultoso observar sus madras; su habit tabular esta bastante bien conservado, a pesar de los pequeños reemplazos, por parte de la pasta.

Subordinada a la plagioclasa, observamos hornblenda verde con hábito prismático, de menor desarrollo que la plagioclasa, pistacita como producto de su alteración, en regular proporción, dispuesta preferentemente en sus bordes.

La mica también suele presentar reemplazos reducidos producidos por la pasta.

El escaso cuarzo observado, posee un tamaño reducido, de hábito xenomórfico y más que una segunda generación de fenocristales, su presencia debe ser considerada como resultado de la cristalización de la pasta.

Muestra N° T 40 TUDA
Procedencia: Punto 40 correspondiente al muestreo geoquímico.

Roca de color pardo morado de textura porfírica, con abundantes fenoclastos a blanquecinos de feldespatos; el cemento es denso y notoriamente afanítico.

Se trata de una toba de composición similar a la toba n° 53, aunque difiere de ella en la composición del cemento; en T 40 es vitrea fluidal y los fenoclastos muesran un pronunciado redondeamiento producido por la reacción del cemento que, sumado a la presencia de escasos litoclastos observados ya en la toba n° 53, comunican a la textura cierto carácter de flow brecha, sin llegar a constituir una verdadera brecha de efusión.

Por los caracteres texturales señalados, podemos asignarle a esta toba un carácter ligeramente brechoso.

Además debemos señalar que la plagioclasa se encuentra fuertemente sericitizada, de modo que esta mica ocupa la mayor parte de su superficie.

El cuarzo, que es bastante abundante, también se halla irregularmente corroído por la reacción del cemento.

Muestra n° 57 **PORFIRO GRANODIÁRTICO**

Procedencia: 5 kilómetros al este del Pto. Vazareza (campamento), entre éste y la entrada al Pto. de Marcelino Llanqueleo.

Roca de aspecto granítico, los férmicos aparecen formando asociaciones verdosas de varios individuos, por sus cas
racteres parece hornblenda. Además se destacan abundantes indivi-
duos blanquecinos de plagioclasa que, conjuntamente con los de cuarzo, transfieren a la roca una textura granosa de tamaño mediano. Esta roca se halla fuertemente diacrásada.

Al microscopio se ve una textura porfírica engendrada por abundantes fenocristales de oligoclasa básica, cuarzo y en menor proporción ortosa, además se importa señala presencia de regular cantidad de láminas de biotita cloritizada.

Como ya fue indicado, los fenocristales de plagioclasa son los más representativos y sus máenas según albita son nítidas; su hábito es tabular y sus bordes pueden fluctuar entre sub-idiomorfo y xenomorphic. Aunque su estado de conservación es bastante bueno, algunos individuos presentan masas irregulares de calcita como producto de su alteración. A veces los cristales más idiomorfos, muestran una estructura zonal bastante marcada, en contadas ocasiones se los observa con decomposición sericitica; más frecuentemente en cambio es encontrarlos conteniendo inclusiones de biotita.

Sus bordes, no obstante su idiomorfismo, se hallan ligeramente afectados por reacción de la pasta.

El cuarzo, sigue en cantidad a los fenocristales de plagioclasa, por lo general poseen menor desarrollo que aquellos, aunque en algunos casos su tamaño llega a superar al del calcosódico. Su hábito es irregular, no muestra anomalías ópticas y su distribución es acentuadamente uniforme.

La biotita con hábito laminar, fuertemente cloritizada y alterada en óxido de hierro dispuesto en granos y
pequeñas masas irregulares entre sus planos de olivaje. También se encuentra epidoto en pequeños individuos, proveniente de la descomposición de la mica.

La biotita presenta efectos corrosivos en sus bordes, algunas láminas pequeñas suelen mostrar flexuramientos.

La ortosa, si bien no es abundante, presenta un desarrollo notable, es xenomorfa y se halla levemente corroída por la pasta. Muestra una descomposición arcillosa dispuesta irregularmente en su superficie.

La pasta es gramos, el tamaño de sus componentes oscila de pequeños a medianos, entrando en su composición abundante plagioclasa y cuarzo; como productos secundarios vemos calcita, clorita, sericit y epidoto. Los que se diseminan irregularmente entre las microlitas de plagioclasa y cuarzo. Además la ortosa también es otro constituyente de la pasta y está subordinada porcentualmente al calcocisto y al cuarzo.

A la apatita es frecuente encontrarla como inclusiones en feldespato. Si bien la zonalidad de algunos fenocristales de plagioclasa, muestran un carácter proclive de vulcanismo, el tamaño de los componentes de la pasta, su acentuada equidimensionalidad y la paridad porcentual entre pasta y fenocristales, coadyuvan para considerar a esta roca como un pórfiro granodiorítico intrusivo más que un pórfiro de la facies extrusiva; por eso es que lo clasificamos como granodiorítico en vez de riodacítico.
Muestra no 58

RIODACITA

Procedencia: Por encima del pórfiro granodiorítico no 57

Roca gris con tonalidad rosada oscura, de pasta densa afanítica, y con regular cantidad de fenocristales de feldespato y cuarzo.

Se trata de una riocacita relacionada con la sufusión correspondiente a la riocacita no 48.

La pasta es vitrocristalina fluidal, se encuentra parcialmente devitrificada y los fenocristales son de plagioclasa y cuarzo. El escaso feldespato potásico sólo se localiza en la pasta conjuntamente con plagioclasa y cuarzo.

El material proveniente de la descomposición del vidrio es de naturaleza arcillosa de color parduzco.

Muestra no 59

GRANODIORITA PERFIROIDE

Procedencia: Al oeste de la entrada del Pto. de Marcelino Llauqueles.

Roca gris de grano fino, destacándose cristales de feldespato de 0,5 a 2 cm. de diámetro que confieren a la textura un carácter porfiroide. Microscópicamente la roca presenta una textura granosa porfiroide.

La parte más representativa de la textura, la constituye el agregado granoso, que por otro lado, es abundante. El mismo, se halla constituido preferentemente por cristales de plagioclasa alterada en calcita y sobre todo en sericitas, como así también, en agregados arcillosos.

En poca cantidad, con relevante descomposi-
ción caolínica, se encuentra feldespato potásico; intercrecido con los feldespatos está el cuarzo en cantidad notable. A su vez, minerales secundarios, como calcita, sericit y masas arcillosas, conjuntamente con biotita desferrizada, se diseminan entre los cristales en forma de agregados irregulares birrefringentes, de manera tal, que en conjunto, parte de la textura toma caracteres paralotrimorfos.

Los cristales que adquieren el tamaño de fenocristales son en general de oligoclasa media a básica, con manchas poco nítidas debido a su descomposición, constituida principalmente por calcita y sericit. Esta, suele disponerse en finas laminillas normalmente a las manchas de la ley de albita, es decir, según la dirección de la ley de periclino.

No es improbable que los grandes fenocristales observados macroscópicamente, sean la consecuencia de la asociación de dos o más cristales de plagioclasa, comunicando de tal manera, la apariencia de fenocristales.

Lo mismo podríamos decir para la ortosa y el cuarzo, ya que microscópicamente se han individualizado asociaciones de estos minerales, de forma tal que si las mismas se incrementan en el número de individuos asociados, generarían los fenocristales así observados macroscópicamente.

Ello no exime a ciertos individuos de amplio desarrollo, a que adquieran individualmente el carácter de fenocristal.

Este conjunto de asociaciones de cristales es
el que transfiere el carácter porfiroide a la roca.

Debemos agregar la presencia de apatita como inclusiones.

Muestra n° 61 **PORFIRI GRANODIORITICO**
Procedencia: En contacto con la granodiorita porfiroide (n° 59).

Su color es gris rosado con fenocristales de plagioclasa en regular proporción. La pasta es abundante, de grano mediano a ligeramente grueso, obliterando en parte por este motivo, el carácter porfírico poco marcado de la textura.

Salvo algunas modificaciones en la distribución de los componentes de la pasta, ya que aquí es evidente el carácter de pórforo granodiorítico, los caracteres generales con la granodiorita porfíroide son significativamente semejantes.

Además existe otra diferenciación, la biotita posee en este caso una cloritización no tan intensa como en el pórforo granodiorítico (n° 62).

Asimismo, es difícil en algunas zonas de la textura, poder diferenciar de acuerdo con el tamaño, entre los componentes de la pasta y algunos fenocristales que no están dotados de un desarrollo sobresaliente.

Muestra n° 62 **GRANODIORITICO**
Procedencia: 200 m. al este del pórforo granodiorítico (n° 57)

Roca de textura porfírica con abundantes fenocristales de feldespatos de color blanquecino rosado que, se
destacan plenamente de una pasta microgranosa de color pardo, en proporción más o menos semejante al de los fenocrístales.

Al microscopio puede hallarse una identidad mineralógica con la granodiorita porfiroide (n° 59).

En esta roca se establece una gran diferencia textural merced a la cual, adquiere carácter hipabísal.

Debido a la relación porcentual y de tamaño de los componentes de la pasta, con el desarrollo y frecuencia de los fenocrístales, esta roca podría ser considerada como pórfiro granodiorítico; aunque no escapa la posibilidad que dado el idiomorfismo y secuencia de la plagioclasa, como también por el gran desarrollo de los fenocrístales de cuarzo, no sería descartado clasificarla como pórfiro riolítico.

De acuerdo con las consideraciones expuestas y teniendo en cuenta su vinculación con la granodiorita porfiroide, es más acertado denominarla pórfiro granodiorítico.

Debemos puntualizar que los fenocrístales de plagioclasa, se hallan fuertemente alterados en sericita, parte del feldespato de la pasta, constituye estructura gráfica y asimismo destacamos que la biotita se encuentra desferrizada.

Dr. Fernando L. Sesama
FOTOGEOLÒGIA DE LA REGIÓN
DEL TEMBRAO

REFERÈNCIES

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bto.</td>
<td>Basalto</td>
</tr>
<tr>
<td>C</td>
<td>Cuartario / Riolítas</td>
</tr>
<tr>
<td>P</td>
<td>Riolítas</td>
</tr>
<tr>
<td>Vp.</td>
<td>Pòrfirs, Rodacítics i Granodiorítics</td>
</tr>
<tr>
<td>Al.</td>
<td>Aluviional</td>
</tr>
<tr>
<td>C</td>
<td>Cuartario en general (derrubio)</td>
</tr>
<tr>
<td>P.</td>
<td>Riolítas</td>
</tr>
<tr>
<td>Vm.</td>
<td>Andesitas</td>
</tr>
<tr>
<td>Vt.</td>
<td>Tochas</td>
</tr>
<tr>
<td>V.</td>
<td>Vulcanita no diferenciada</td>
</tr>
<tr>
<td>S.</td>
<td>Sedimentites cinerítics</td>
</tr>
</tbody>
</table>

Contactos

Borda basàltica

Falla, fractura

Diaclasa

Prospecció geoquímica

Esc. 1:50000 (aprox)