DIRECCIÓN NACIONAL DE MINERÍA Y GEOLOGÍA CENTRO DE EXPLORACIÓN CÓRDOBA

INFORME TÉCNICO SOBRE LA PROSPECCIÓN GEOQUÍMICA EN SEDIMENTOS DE CORRIENTE. CERRO SAN LORENZO. CÓRDOBA

Autor: PETRELLI, H.

CANDIANI, J.

MARTOS, D.

Contenido

	pág,
Objetivo	1
Muestreo	1
Tratamiento de las muestras	
Análisis	
Tratamiento estadístico de los resultados analíticos	1
Tabla 1: resumen estadístico	1
Tabla 2: agrupación de clases	
Conclusiones y recomendaciones	2
Bibliografía consultada	2
Figura 1: ubicación y bosquejo geológico-estructural 3	-
Figura 2: gráficos de caja para Cu, Ni y Co	4
Figura 3: ubicación de muestras	5
Figura 4: geoquímica de sedimentos de corriente	_
cobre	6
Figura 5: geoquímica de sedimentos de corriente	_
niquel	7
Figura 6: geoquímica de sedimentos de corriente	•
cohalto	8
Anexo I: planillas geoquímicas	9

-----000-----

PROYECTO CERRO SAN LORENZO

Prospección Geoquimica (sedimentos de corriente)

Objetivo:

Delimitar, por medio de la geoquímica de sedimentos de corriente, áreas anómalas que indiquen la presencia de sulfuros portadores de Ni, Cr y platinoideos en las rocas máficas del Cerro San Lorenzo.

Muestreo:

Para realizar el muestreo se delimitaron cuencas de drenaje sobre una fotointerpretación a escala 1:20.000, la cual abarca una superficie de aproximadamente 10 km². (ver figura 1 y 3). En el mismo mapa se ha marcado el contacto de la roca máfica (gabro) con su caja metamórfica (esquistos inyectados y anfibolitas). En los puntos de muestreo se recolectaron unos 1000 gr. de material psamo-pelítico, proveniente de cauces con agua o secos.

Las muestras sumaron un total de 65. Las áreas representadas por las mismas oscilan entre los 0,02 y 0,5 km².

Tratamiento de las muestras:

Las muestras fueron colocadas en recipientes de vidrio y secadas en estufa. Una vez secas se disgregaron con mortero de porcelana y luego se eliminó la materia orgánica (hojas, raíces) mediante un tamiz de acero inoxidable. Una parte de la muestra, separada por cuarteo, fue enviada al laboratorio para

Una parte de la muestra, separada por cuarteo, fue enviada al laboratorio para su análisis químico.

Análisis:

Se efectuaron análisis (espectrometría de absorción atómica) por Cu, Ni y Co en el laboratorio de la Delegación La Rioja (DNM), ver Anexo I.

Tratamiento estadístico de los datos:

Se ha realizado una interpretación estadística preliminar, utilizando los valores de Cu, Ni y Co.

La tabla 1 es un resumen estadístico de los resultados analíticos.

Variable	Cu	Ni	Со
Tamaño	65	65	65
Media aritmética	50,43	2558	47
Hediana	49	2570	48
Hodo	50	2148	48
Desviación std.	15,82	809,33	10,29
Miniso	11	26	16
Máxìso	117	4900	77
Rango	106	4874	61
Cuartil inf.	43	1971	43
Cuartil sup.	55	2903	53
Rango interc.	12	9 32	10
Sesgo	1,61	0,11	-0,09

Tabla 1. Resumen estadístico: sedimentos de corriente (en ppm), CO San Lorenzo.

Los datos se trataron aplicando la técnica estadística conocida como EDA (exploratory data analysis). Los valores contenidos dentro de la caja (boxplot) son considerados normales o de fondo geoquímico, la línea vertical marca la posición de la mediana, e indica la simetría y el sesgo de la parte central de la

distribución. La línea horizontal ("whisker") representa los datos periféricos que son interpretados como <u>umbral geoquímico</u>. Los valores extremos o <u>anómalos</u> se grafican individualmente como puntos (ver tabla 2 y figura 2). Una clase adicional puede introducirse, dividiendo el fondo en dos, por la mediana.

	Cu	Ni	Co
anomalias (-)	< 35	< 800	< 30
umbral (-)	35-43	800-1971	30-43
fondo (<õ)	43-49	1971-2570	43-48
fondo (>&)	49-55	2570-2903	48-53
umbral (+)	55-68	2903-4301	53~68
anomalfas (+)	> 120	> 5000	> 68

Tabla 2 . Agrupación en clases.

Para la confección de los mapas geoquímicos de sedimentos de corriente se utilizó como elemento de representación la cuenca de drenaje. En los mapas se grafican tres intervalos de clase, que corresponden a: valores del fondo geoquímico mayores que la mediana (rayado abierto), umbral positivo (rayado denso) y anomalías (negro). Una fina línea de puntos marca el contacto aproximado de la roca máfica del Cerro San Lorenzo con las metamorfitas de caja (ver figuras 3, 4, 5 y 6).

Conclusiones y recomendaciones:

- Se observa una tendencia hacia valores más altos en las zonas de contacto N-NW y S-SE, y en zonas en el interior del cuerpo proclives a alinearse según el rumbo de la estratificación interna del gabro (en promedio NW-SE)
- Las observaciones de campo (ambiente geológico, estratificación del gabro, modelo genético, presencia de sulfuros, etc), más la tendencia de los resultados obtenidos del muestreo geoquímico de sedimentos de corriente, justifican la continuación del programa de investigación.
- Se recomienda agotar los medios para lograr confiabilidad en los resultados químicos de los análisis de rutina y estudiar la posibilidad de que otros laboratorios (nacionales o extranjeros) analicen distintos elementos químicos, como el caso de los platinoideos, objeto de esta investigación.

Bibliografia consultada

- KÜRZL, H., 1988. "Exploratory data analysis: recent advances for the interpretation of geochemical data". Journal of Geochemistry, 30-309:322
- VILLAR, L.; CANDIANI, J.C; MIRO, R. y SEGAL, S., 1982. "El gabro estratificado del Cerro San Lorenzo, Dpto. Calamuchita, Córdoba; su interés económico. D.N.M. Inédito.

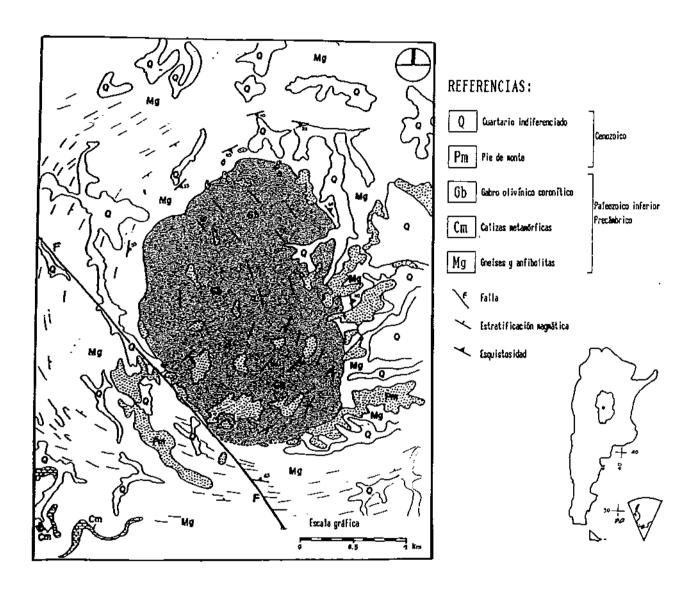


Figura 1. Ubicación y bosquejo geológico estructural del Cerro San Lorenzo, Córdoba.

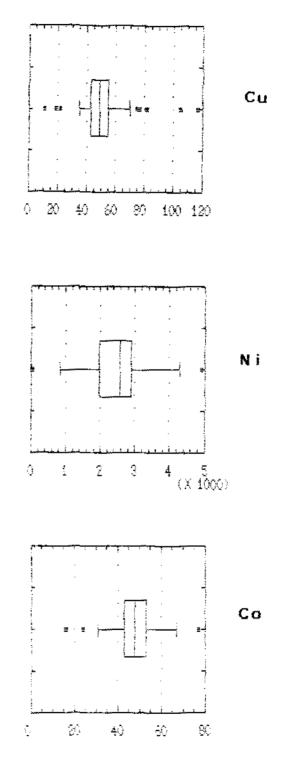
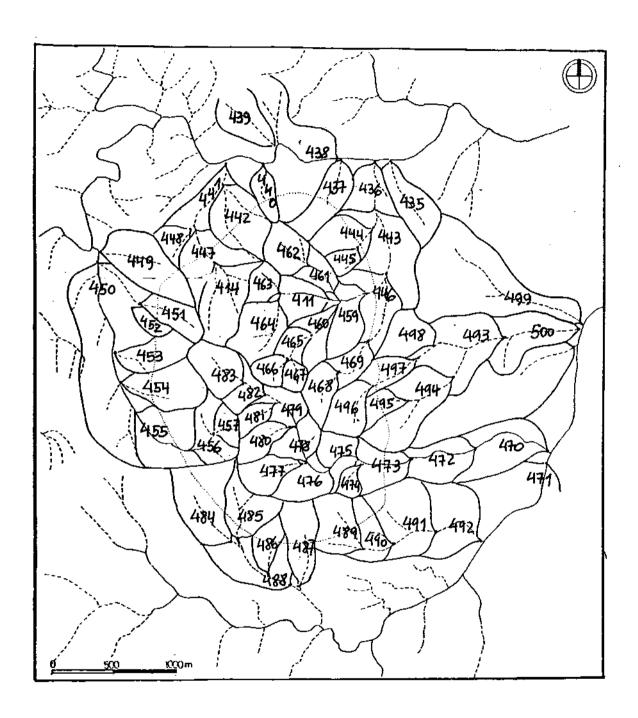
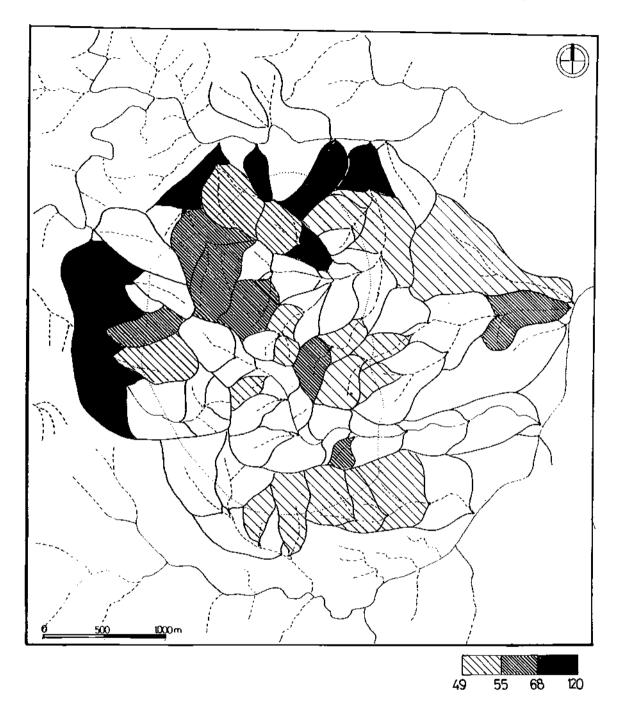
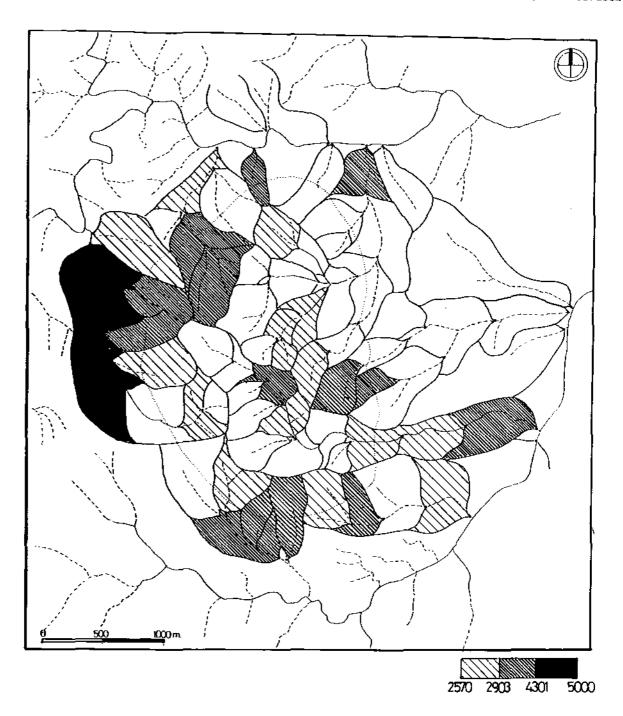
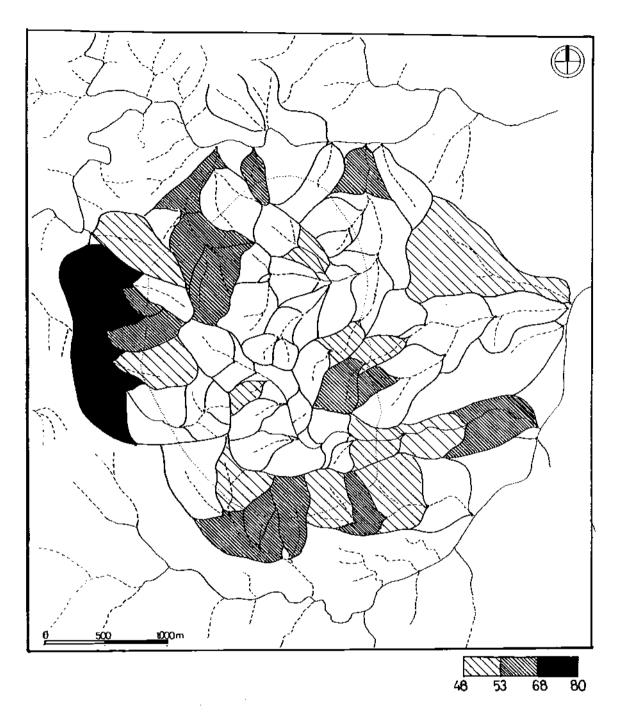


Figura 2. Geoquímica de sedimentos de corriente. Gráficos de caja (boxplots) para Cu, Ni, Co (en ppm).


Figura 3. Geoquímica de sedimentos de corriente. Ubicación de muestras.

REFERENCIAS


Figura 4. Geoquímica de sedimentos de corriente. COBRE (ppm)

REFERENCIAS

Figura 5. Geoquímica de sedimentos de corriente. NIQUEL (ppm)

REFERENCIAS

Figura 6. Geoquímica de sedimentos de corriente. COBALTO (ppm)

Número	Cu	Ni	Co
88435 88436 88437 88438 884438 884440 884441 884443 884445 884445 884450 884451 884452 884453 88453 8853 88	117757120003861625344731119987002561907568974785053450922092	26 4280 1940 4020 2900 3010 2870 1910 1695 1971 2517 1574 4010 2172 2820 4900 2910 3290 3300 2963 2860 22637 843 2219 2860 2740 1250 2740 1250 2740 1250 2740 1250 2740 1250 2740 1250 2740 1250 2740 1250 2740 1250 2740 1250 2740 1250 2740 1250 2740 1250 2740 2750 2763 2763 2763 2763 2763 2763 2763 2763	16306555829488577456399884258864441830688293348016688278662434 5555843448574564348248248586444183556824334348016688278662434
88488 88489 88490 88491	50 49 52 52 50	3820 2880 2970 2840	56 52 54 53

ANEXO I : Planillas geoquímicas. Proyecto San Lorenzo.