Programa Nacional de Cartas Geológicas de la República Argentina 1:250.000

Hoja Geológica 3366-II

Villa de Merlo
Provincias de San Luis y Córdoba

Juan Carlos Candiani¹

Geomorfología: Guillermo Ojeda²
Recursos minerales: Huberto Ulacco²
Supervisión: Roberto C. Miró¹

¹ Servicio Geológico Minero Argentino
² Universidad Nacional de San Luis

Normas, dirección y supervisión del Instituto de Geología y Recursos Minerales

SERVICIO GEOLÓGICO MINERO ARGENTINO
INSTITUTO DE GEOLOGÍA Y RECURSOS MINERALES

Boletín N° 415
Buenos Aires - 2016
Referencia bibliográfica

INDICE

RESUMEN ... 1
ABSTRACT ... 2

1. INTRODUCCIÓN ... 3
 Naturaleza y metodología del trabajo ... 3
 Agradecimientos .. 3
 Situación y características geográficas ... 3
 Investigaciones anteriores .. 4

2. ESTRATIGRAFÍA ... 4
 Relaciones generales .. 4
2.1. Paleozoico .. 6
2.1.1. Cámbrico .. 6
 Complejo Metamórfico Comechingones (1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i) 6
2.1.2. Cámbrico- Ordovícico ... 12
 Complejo Metamórfico Conlara (2a, 2b) .. 12
 Complejo Metamórfico Pringles (3a, 3b) ... 15
2.1.3. Ordovícico .. 17
 Formación San Luis (4a, 4b) ... 17
 Granitoides famatinianos (5) ... 19
 Granitoides El Realito ... 19
 Tonalita Quines .. 21
 Granito El Peñón ... 22
 Tonalitas Rodeo Viejo ... 22
 Otros cuerpos ... 23
 Granitoides de la sierra de Comechingones ... 24
 Pegmatitas (6) .. 25
2.1.4. Devónico- Carbonífero Inferior ... 25
 Rocas miloníticas en zonas de cizalla (7) .. 25
 Zona de cizalla Tres Árboles - Las Albahacas - Las Lajas 26
 Zona de cizalla Río Guzmán .. 27
 Zona de cizalla La Arenilla .. 27
 Granitoides Achalianos (8) ... 28
 Batolito Las Chacras ... 29
 Batolito de Renca ... 31
 Plutón El Hornito ... 32
 Plutón El Telarillo ... 33
 Plutón La Población ... 34
 Granito Los Alanices ... 34
 Granito Tilisaraao .. 34
 Complejo Magmático Cerro Áspero ... 35
 Complejo Magmático Achiras .. 37
 Complejo Magmático de Achala .. 38
 Lamprófiros (9) ... 39
2.1.5. Carbonífero Superior- Pérmico .. 40
Grupo Paganzo ... 40
Formación Bajo de Véliz (10) ... 40

2.2. Mesozoico ... 43
2.2.1. Cretácico ... 43
Basaltos (11) ... 43
2.3. Cenozoico ... 45
2.3.1. Neógeno ... 45
2.3.1.1. Mioceno- Plioceno ... 45
Formación Paso de Las Carretas y Formación Río Quinto (12) ... 45
2.3.2. Neógeno- Cuaternario ... 47
2.3.2.1. Mioceno superior- Pleistoceno inferior .. 47
Complejo Volcánico El Morro (13a, 13b, 13c) ... 47
2.3.2.2. Plioceno- Pleistoceno 50
Depósitos pedemontanos antiguos (14) ... 50
2.3.3. Cuaternario ... 50
2.3.3.1. Pleistoceno ... 50
Formación Pampeano (15) ... 50
Formación Río Conlara (16) ... 52
2.3.3.2. Pleistoceno- Holoceno 52
Depósitos loéssicos (17) ... 52
2.3.3.3. Holoceno ... 53
Depósitos pedemontanos (18a) ... 53
Depósitos de remoción en masa (18b) .. 53
Depósitos aluviales (19)... 51
Depósitos eólicos (20) ... 54

3. ESTRUCTURA ... 54
Ciclo Pampeano: deformación y metamorfismo cámbricos .. 54
Ciclo Famatiniano: deformación y metamorfismo ordovícicos .. 54
Ciclo Achaliano: deformación y retrogradación devónicas .. 55
Extensión Mesozoica ... 56
Ciclo Andino. Fallamiento inverso. ..56

4. GEOMORFOLOGÍA ... 58
Regiones geomorfológicas ... 59
1. Depresión longitudinal central ... 59
2. Sierra de San Luis ... 60
3. Depresión del Conlara ... 62
4. Sierra de Comechingones ... 64
5. Depresión Calamuchita- La Cruz ... 66
6. Planicie pedemontana ... 66
7. Sierra Chica ... 67

5. HISTORIA GEOLÓGICA ... 67

6. RECURSOS MINERALES ... 69
Metalogénesis ... 69
6.1 Depósitos de minerales metalíferos ... 70
Oro- Plata- Cobre ... 70
Distritos La Carolina, Cañada Honda ... 70
Cobre–Hierro y Plomo–Zinc .. 70
Cu-Fe (Zn, Au) en anfibolitas .. 71
Cu (Au) en calizas dolomíticas .. 71
Plomo, Zinc, Cobre, Plata y Vanadio ... 72
Distrito Las Aguadas ... 72
Distrito Piedra Blanca ... 73
Uranio .. 73
Mina La Estela .. 74
Uranio, Columbio y Tantalo en pegmatitas .. 74
Uranio en rocas sedimentarias .. 75
Elementos de la Tierras Raras, Torio y Uranio. ... 75
Distrito Rodeo de Los Molles ... 75
Wolframio ... 75
Distrito Cerro Áspero .. 76
Distrito San Martín ... 76
Distrito Río Guzmán .. 78
Distrito Los Cóndores - Santa Rosa de Conlara ... 79
Distritos La Estanzuela, San Felipe y Villa Praga ... 81
Molibdeno ... 81
Bismuto ... 81
Cromo .. 81
6.2 Depósitos de minerales no metalíferos .. 83
Pegmatitas portadoras de Be, Li, Ta, Nb, Sn, TR, U, Th 83
Distrito pegmatítico La Estanzuela, San Luis .. 83
Distrito pegmatítico Comechingones, Córdoba .. 84
Distrito pegmatítico Conlara .. 85
Fluorita .. 85
Distrito Cerros Negros ... 85
6.3 Rocas de aplicación ... 87
Granitos ... 87
Zona Potrerillos (San Luis) .. 87
Zona Renca (San Luis) .. 87
Yacanto de Calamuchita (Córdoba) ... 87
Granitos negros (gabros) .. 87
Canteras Champaquí y Bianco (Córdoba) .. 87
Canteras Suya Taco (Córdoba) ... 87
Mármol .. 87
Distrito Cañada de Álvarez ... 87
Distrito Río de Los Sauces .. 88
Distrito Atos Pampa .. 88
Distrito Achiras .. 88
Distrito Sierra de la Estanzuela ... 88
Sector Merlo y Cortaderas ... 88
Travertino y ónix calcáreo ... 89
Calcáreos ... 89
Arcillas ... 89
Piedra laja .. 90
 Filitas Paso del Rey ... 90
 Laja Bajo de Véliz .. 90
 Arena, ripio y rodados ... 90

7. SITIOS DE INTERÉS GEOLÓGICO ... 90
 Zona de cizalla Tres Arboles .. 90
 San Virgilio .. 91
 Bajo de Véliz ... 91
 Cañada Honda ... 91
 Falla Calamuchita ... 91
 Estancia La Suiza .. 91
 Canteras Santa Isabel .. 91
 Yacimiento Los Cóndores ... 91

BIBLIOGRAFÍA .. 92

ANEXO CUADRO DE RECURSOS MINERALES .. 115
RESUMEN

La Hoja Geológica 3366-II Villa de Merlo abarca una extensa región ubicada en las provincias de San Luis y Córdoba que involucra terrenos igneo-metamórficos dispuestos como bloques serranos de orientación norte-sur.

En las sierras de Córdoba, el Complejo Metamórfico Comechingones está constituido por rocas que fueron deformadas y metamorfizadas durante el Ciclo Pampeano cámbrico. Durante el Ordovícico Inferior las sierras de San Luis y Córdoba fueron afectadas por metamorfismo y deformación compresiva, a los que siguió una tectónica extensional con emplazamiento de granitoides y metamorfismo retrógrado, eventos que se relacionan con el Ciclo Famatiniano. Los complejos metamórficos Conlara y Pringles, de la sierra de San Luis, representan rocas sedimentarias que se depositaron antes de la tectónica colisional del Ciclo Famatiniano, mientras que la Formación San Luis se habría depositado tardíamente, probablemente durante una fase extensional póstuma, a la que siguió una tectónica orientada a la formación del cit. Famatiniano.

La historia post ordovícica estuvo dominada por la intrusión de granitos en un marco tectónico compresivo acompañado de plegamiento y cizallamiento. Estos acontecimientos se produjeron durante el Devónico-Carbonífero inferior son descriptos bajo el nombre de Ciclo Achaliano. La historia post orogénica estuvo dominada por la intrusión de granitos en un marco tectónico compresivo acompañado de plegamiento y cizallamiento. Estos acontecimientos se produjeron durante el Devónico-Carbonífero inferior son descriptos bajo el nombre de Ciclo Achaliano.

Restos de sedimentitas glacilacustres carbonífero-pérminicas, correlacionables con el Grupo Paganzo, se han preservado en una estrecha depresión tectónica conocida como Bajo de Véliz. El Mesozoico está representado por pequeñas efusiones basálticas y diques. La columna estratigráfica se completa con las vulcanitas neógenas del Complejo Volcánico El Morro, perteneciente al Ciclo Ándico, y sedimentitas neógeno cuaternarias que rellenan las depresiones intermontanas.

El rasgo estructural más antiguo observable en la sierra de Comechingones corresponde a la foliación metamórfica S1 de alto grado, bien preservada en gneises pelíticos y magnéticas de los complejos metamórficos cámbricos. En la sierra de San Luis, las metamolitas poseen una fábrica gnésica S1 pero que corresponde a la S2 a nivel regional. En la mayor parte de la región, las fábricas de alto grado pampeanas (S1) y famatinianas (S2) han sido mayormente rotadas al paralelismo por cizallamiento penetrativo (S3), asociado al Ciclo Achaliano, marcado por el desarrollo de importantes zonas miloníticas y retrogradación metamórfica. Durante el Neógeno, un período de deformación extensional, seguido de compresión, generó cuencas y vulcanismo. A partir del Plioceno medio el vulcanismo cesó y comenzó un régimen compensacional que produjo el levantamiento de bloques de basamento por la acción de fallas inversas de moderado a alto ángulo; formando sierras con escarpas abruptas al oeste y una ladera oriental de suave inclinación.

La metalogénesis de la región está estrechamente relacionada con cinco ciclos tecto-magmáticos que corresponden a las orogenías Pampeana y Famatiniana, al ciclo magnético Achaliano, al rifting cretáceo y a la orogenia Andina. Al primero se vinculan genéticamente algunos depósitos de W, Cu-Fe-Au, Pb-Zn y cromitas asociadas a rocas ultrabásicas; la fase metalogénica familiarina coincide con el emplazamiento de grandes cuerpos de granitos y pegmatitas a los que se asocian depósitos de Li, Be, Nb, Ta, Sn, minerales industriales y algunas mineralizaciones de W; al ciclo metalogénico devónico se vinculan depósitos de Au, W, Ag, Pb, Zn, Cu y una segunda fase pegmatítica con mineralizaciones de Be, Li, Nb, Ta, U, REE y F; durante el Cretácico se formaron depósitos de fluorita y, por último, las mineralizaciones de Au, Cu (Ag-Pb-Zn) se relacionan con el vulcanismo mioceno-plioceno del Ciclo Ándico.
ABSTRACT

3366-II Villa de Merlo Sheet covers a region of San Luis and Cordoba provinces, including igneous-metamorphic blocks arranged as north-south oriented ranges and basins that were uplifted by high angle faults.

In Córdoba province, Comechingones Metamorphic Complex involves rocks that were deformed and metamorphosed during the Cambrian Pampean cycle. During the Lower Ordovician San Luis and Cordoba basement was affected by compressive deformation and metamorphism, followed by an extensional tectonism, granitic intrusions and retrograde metamorphism, related to the Famatinian cycle. The Conlara and Pringles metamorphic complexes, from sierra de San Luis, represent sedimentary rocks that deposited prior to collisional tectonics (Famatinian cycle). The San Luis Formation has been deposited in a late cycle, probably during an extensional phase and shows little evidence of the intense effects of Famatinian cycle. It was intruded by late Ordovician granitoids that produced contact metamorphic aureoles. Ductile Devonian shear zones override the Cambrian Córdoba terrane (sillimanitic gneisses, schists and migmatites) on to Ordovician San Luis rocks (gneisses, schists and phyllites). The most significant shear zone, Tres Árboles, extends along the western margin of the Sierras de Córdoba.

The post Ordovician history was dominated by the intrusion of granites in a compressive tectonic setting accompanied by folding and shearing, described as Achalian cycle.

Remains of glacilacustres Carboniferous-Permian sediments, correlated with Paganzo Group, have been preserved in a narrow tectonic depression known as Bajo de Veliz. The Mesozoic is represented by basaltic dikes and small monogenetic volcanoes. The stratigraphic column is completed with the neogene Complejo Volcánico El Morro belonging to Andean cycle, and Cenozoic sediments that fill the intermontane depressions.

The oldest structural feature in the Sierra de Comechingones corresponds to a high-grade pelitic gneisses and amphibolite foliation S1, well preserved in Cambrian metamorphic complexes. In the Sierra de San Luis, the metapelites have a gneissic fabrica S1 that correspond to S2 regional fabric. In most of the region, the high grade pampean (S1) and famatinian (S2) fabrics have mostly been rotated to parallelism by penetrative shear (S3), associated with the Achalian cycle, represented by the development of major mylonitic zones and metamorphic retrogradation. During the Neogene, a period of extensional deformation followed by compression, generated basins and volcanism. From the middle Pliocene, volcanism ceased and began a compressional regime that produced the lifting of basement blocks by means of reverse faults; developing ranges with steep slopes to the west.

The Metallogeny is closely related with tectomagmatic cycles corresponding to Pampean and Famatinian orogenies, Achalian magmatic cycle, the Cretaceous rifting and the Andean Orogeny. W, Cu-Fe-Au, Pb-Zn deposits and chromites are associated with Pampean cycle; famatinian metallogenic phase coincides with the emplacement of large bodies of granite and Li, Be, Nb, Ta, Sn, W bering pegmatites; Au, W, Ag, Pb, Zn, Cu and a second Be, Li, Nb, Ta, U, REE, Th, F pegmatite phase is linked with Devonian cycle; deposits of fluorite were formed during the Cretaceous. Disseminated Au, Cu (Ag-Pb-Zn) is related to the Miocene-Pliocene volcanism Andean cycle.
1. INTRODUCCIÓN

NATURALEZA Y METODOLOGÍA DEL TRABAJO

La Hoja Geológica 3366-II Villa de Merlo, a escala 1:250.000, ha sido confeccionada siguiendo las normas del Programa Nacional de Cartas Geológicas de la República Argentina.

Las tareas de cartografía geológica se apoyaron sobre imágenes satelitales multibanda ASTER y LANDSAT-7 TM, la base topográfica IGN 1:250.000 y modelos de elevación digital (DEM), datos geofísicos aéreos, cartografía temática existente y numerosas observaciones de campo, todo georreferenciado al sistema POSGAR, faja 3.

Las descripciones petrológico estructurales, los muestreos y las tomas de fotografías, entre otras tareas, fueron ubicadas mediante GPS y registradas en una libreta diseñada para alimentar un sistema de información geográfica. En la mayoría de los puntos se realizaron mediciones de susceptibilidad magnética utilizando un susceptibilímetro manual1. Las abreviaturas minerales utilizadas corresponden a Kretz (1983). La construcción del mapa se realizó con el programa Arc-Map.

AGRADECIMIENTOS

Se agradece el acompañamiento en tareas de campo al geólogo Edgardo Baldo y estudiantes de geología Martín Argota y Carlos Ramacciotti (Universidad Nacional de Córdoba).

SITUACIÓN Y CARACTERÍSTICAS GEOGRÁFICAS

La Hoja Villa de Merlo está ubicada en el noroeste de la provincia de San Luis y centro oeste de la provincia de Córdoba. El área cartografiada está limitada por los paralelos 32° y 33° de latitud sur y los meridianos 64°30’ y 66° de longitud oeste, cubriendo una superficie de 15.638 km² (figura 1).

Se destaca la presencia de dos cordones orográficos de moderada altitud y laderas asimétricas: las sierras de Comechingones y de San Luis, separados por la depresión conocida como valle de Conlara.

Las principales elevaciones se concentran en la sierra de Comechingones, donde los picos superan los 2.500 m snm, disminuyendo en altitud hacia el sur, donde a la latitud de Villa del Carmen alcanzan los 1.300 metros. En la sierra de San Luis las máxi-

Figura 1: Mapa de ubicación de la Hoja 3366-II
mas cotas corresponden al cordón de El Realito, con una altura máxima de 1.780 metros.

Si bien la región tiene un clima semiárido, en las áreas serranas imperan condiciones de mayor humedad e inviernos más rigurosos. En el sector NE, que incluye el valle de Conlara y las sierras de San Luis y de Comechingones, el clima es templado subhúmedo serrano. La disposición NS de los cordones montañosos juega un papel decisivo sobre la circulación atmosférica, ya que es transversal al rumbo con que habitualmente avanzan las corrientes de aire. Las lluvias están concentradas, por lo general, en el período comprendido entre octubre y marzo.

En cuanto a la vegetación, en los sectores pedemontanos domina el monte bajo y en las zonas altas los pastizales naturales. Las zonas llanas han sido modificadas para uso agrícola.

Los principales centros poblados se distribuyen en la depresión del río Conlara y en el valle de Calamuchita- La Cruz. Una red vial con caminos de diversa jerarquía y transitabilidad permite el acceso en vehículo a la casi totalidad del área, con restricciones en las abruptas laderas occidentales de las sierras de San Luis y de Comechingones.

INVESTIGACIONES ANTERIORES

La Hoja 3366-II Villa de Merlo comprende la totalidad de las antiguas hojas geológicas a escala 1:200.000: 23h-Sierra de La Estanzuela (Rossi, 1966a) y 22h-Santa Rosa (Methol, 1971); y parte de las hojas 22g-Quines (González, 1957) y 23g-San Francisco (Pastore y González, 1954).

Las primeras investigaciones geológicas en la comarca fueron llevadas a cabo por Ave Lallemant (1875), Brackebusch (1876, 1891), Bodenbender (1894, 1905), Döering (1873) y Gerth (1914).

Una primera versión de esta Hoja, denominada Hoja Santa Rosa de Conlara, fue realizada por Costa et al. (1995). Entre los años 1994 y 1996 el SEGEMAR, en convenio con el Servicio Geológico Australiano (AGSO) realizó el primer mapeo de segunda generación a escala 1:100.000 que cubrió gran parte de la zona de estudio. El trabajo incluyó una cobertura geofísica aérea (magnetometría y radimetría K-U-Th) al sur de los 32°40’S, con vértices de dirección este- oeste, espaciado de 500 m y altura sobre el terreno de 100 m (Sims et al., 1997).

2. ESTRATIGRAFÍA

RELACIONES GENERALES

Las sierras de San Luis y de Córdoba constituyen dos importantes terrenos morfoestructurales exhumados en el Cenozoico como producto de la subducción subhorizontal de la Placa de Nazca a causa de la tectónica Andina (Jordan y Allmendinger, 1986). Los terrenos están constituidos por un basamento ígneo-metamórfico que se dispone como bloques serranos de orientación norte-sur, separados por cuencas intermontanas. Estudios geológicos y geofísicos (Sims et al., 1997) han demostrado que el basamento paleozoico de las sierras de San Luis y Córdoba consiste en dominios metamórfico-estructurales separados por fajas tectónicas. Los mencionados autores reconocieron un dominio cármeno (Pampeano) y otro orórdico (Famatiniano), que comparten una historia geológica común a partir del Devónico Inferior, cuando fueron intruidos por granitos de extensión batolítica asignados al Ciclo Achaico.

Las rocas metasedimentarias de las sierras de Córdoba (Complejo Metamórfico Comechingones) habrían sido parte de un prisma de acreción formado a lo largo del margen convergente occidental de Gondwana (Lyons et al., 1997; Northrup et al., 1998; Rapela et al., 1998). Basándose en datos geocronológicos, Stuart-Smith et al. (1999) y Gromet y Simpson (1999) asignan al pico metamórfico una edad de 520 Ma, en coincidencia con un evento de migmatización. El basamento de la Sierra de San Luis (complejos metamórficos Conlara y Pringles) se compone de rocas metamórficas e ígneas que
comparten una estructuración penetrativa subvertical de dirección NNE que se habría originado por la deformación principalmente ordovícica. El control estratigráfico superior está dado por la intrusión de granitoides devónico- carbóníferos y la sedimentación carbonífero-pérmica (Formación Bajo de Véliz) que se apoya en discordancia angular sobre las metamorfitas. Los complejos metamórficos se disponen como fajas norte-sur separadas principalmente por zonas de cizalla dúctil con rumbo N a NNE (fajas Guzmán y La Arenilla). Si bien los ciclos orogénicos Pampeano y Famatiniano son registrados en los complejos metamórficos de San Luis y Córdoba, la evolución petrológica de las sierras de Córdoba es principalmente Pampeana mientras que en San Luis es fundamentalmente Famatiniana.

Zonas de cizalla dúctiles de edades ordovícicas a devónicas sobrecerraron hacia el oeste y yuxtapusieron el terreno cámbrico cordobés (gneises sillimaníticos, esquistos y migmatitas) sobre el terreno ordovícico puntano (gneises, esquistos y filitas de grado metamórfico biotita-clorita). La más significativa es la denominada zona de cizalla Tres Árboles que se extiende con rumbo NNO a lo largo del margen oeste de las sierras de Córdoba (Whitmeyer y Simpson, 2003). La misma faja habría controlado el emplazamiento de los batolitos Cerro Áspero y Achala a partir del Devónico Superior.

La actividad magmática está representada por la intrusión de granitoides, cuyas edades indican un emplazamiento asociado a los ciclos famatiniano y achaliano.

Las sedimentitas paleozoicas aflorantes en el ámbito de la hoja son depósitos de ambiente glacifluviales que se han preservado en estrechas depresiones de orientación N-S, como el caso del Bajo de Véliz, ubicado al NE de la sierra de San Luis.

La secuencia volcánica sedimentaria cretácica aflora parcialmente en las proximidades de Cañada de Alvarez y como pequeños conos basálticos y diques al sur de la sierra de Comechingones y en la sierra de San Luis.

| Cuadro 1: Cuadro estratigráfico de la Hoja Villa de Merlo |
El conjunto anterior fue intruido por vulcanitas y cubierto por rocas volcaniclásticas de edad mioceno-pliocena que se disponen formando una faja de rumbo NO que atraviesa la sierra de San Luis. Por último, sedimentos continentales cenozoicos rellenan las cuencas intermontanas.

Las Relaciones estratigráficas de las unidades descritas en la Hoja pueden verse en el cuadro 1.

2.1. PALEOZOICO

2.1.1. CÁMBRICO

Complejo Metamórfico Comechingones (1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i)

1a gneises y esquistos; 1b anatexitas; 1c estromatitas; 1d ortogneises y restitas metamórficas; 1e anfibolitas; 1f mármoles; 1g rocas ultramáficas; 1h metagabros; 1i metatonalitas.

Antecedentes

Los gneises y anatexitas que forman este complejo fueron agrupadas como Macizo Migmático de Atos Pampa y Macizo Migmático del Cerro Pelado por Gordillo (1979). La unidad gnéisica incluye las micacitas gnéisicas esquistosas de Methol (1971), los gneises tonalíticos biotíticos de Gordillo y Lencinas (1979) y los gneises biotíticos granatíferos, esquistos biotíticos granatíferos y ortogneises de Guereschi y Baldo (1993). La porción aflorante al sur del batolito de Cerro Áspero fue cartografiada por Candiani y Maza (1982) como parte de un programa de prospección geoquímica donde se reconocieron gneises, migmatitas, cuerpos concordantes de metatonalitas, fajas de anfibolitas y mármoles, algunos gabros y numerosos pequeños cuerpos de hornblenditas y perknitas asociados a zonas de cizalla.

En la presente hoja se ha adoptado la denominación asignada por Martino et al. (1995) y Bonalumi et al. (1998) por ser más abarcativa en su extensión y composición.

Distribución areal

El Complejo Metamórfico Comechingones aflora en Córdoba, en la sierra de Comechingones al sur del batolito de Achala. Está limitado al oeste por la cizalla Tres Árboles que lo yuxtapone con el Complejo Metamórfico Conlara. Geográficamente sobrepasa los límites de esta Hoja y se extiende desde el cerro Champaquí al norte, hasta la localidad de Achiras al sur.

Litología y estructura

Las variedades litológicas reconocidas dentro del complejo fueron diferenciadas por medio de la interpretación de imágenes satelitales basada en el reconocimiento de campo y a la consulta de numerosos trabajos de investigación sobre el basamento metamórfico de la zona.

El Complejo Metamórfico Comechingones está constituido principalmente por gneises y esquistos (1a) de color gris, granulometría media, marcada foliación y bandeado composicional (figura 2). Están compuestos por cuarzo, plagioclase, biotita, granate y eventualmente pueden contener escaso feldespato potásico y sillimanita. Entre los accesos se destacan apatita, circón y minerales opacos. En afloramiento los gneises se distinguen por formar gruesas lajas que inclinan generalmente al NE, aunque en ciertos sectores poseen un aspecto de bochas. Variadas esquistositas de igual composición, pero de grano fino, se presentan junto con los gneises marcando el plegamiento regional junto con bancos delgados de anfibolitas y mármoles. Al oeste de la falla Guacha Corral, Guereschi (2000) observó rocas con estaurolita y disteno en contacto, formando blastos bien desarrollados que son...
indicadores de metamorfismo de grado medio (zona de estaurolita + disteno).

Las anatexitas (1b) forman fajas de rumbo NO de varios kilómetros de ancho, que se interdigitan con sectores gnéisicos. Son rocas macizas de aspecto granítico que generan un paisaje bochiforme característico. Dentro de las anatexitas son comunes los resisters de esquistos y gneises foliados. Se han reconocido variedades en función de la composición del protolito, como las anatexitas cordieríticas que habrían derivado de sedimentos pelíticos muy ricos en aluminio y las anatexitas ricas en biotita que derivarían de rocas grauváquicas. Las principales asociaciones minerales reconocidas por Gordillo y Lencinas (1979) son: Kfs-Qtz-Crd-Bt-Grt-Sil (Pl); Kfs-Qtz-Crd-Bt-Grt- (Pl-And); Pl-Qtz-Crd-Grt-Bt-Sil; Crd-Grt-Qtz-Pl-Bt-Ath. La cordierita se presenta como nódulos oscuros de varios centímetros o como granos celestes, grisáceos o verdosos, distribuidos en toda la roca. El granate es almandino. El circon aparece en pequeñas porciones junto a minerales opacos y apatita. El aspecto textural de una típica anatexita puede observarse en la figura 3. De acuerdo con los estudios termobarométricos realizados por Gordillo (1984), las rocas anatécticas se habrían formado a temperaturas de 720ºC y 6.4 Kbar de presión.

En algunos lugares del complejo metamórfico, entre Huerta Vieja y Lutti, Guereschi (2000) cartografió migmatitas estromatíticas (1c) que se caracterizan por la alternancia de capas claras (leucosomas) y oscuras (melanosomas) que le confieren a la roca un bandeado uniforme que suele estar deformado y plegado. Los afloramientos tienen el aspecto de «lomos de ballenas» con foliaciones orientadas con rumbo noroeste. Las estromatitas suelen tener segregados graníticos localmente discordantes y presentan resisters de esquistos de grano fino. Los leucosomas son de grano grueso y color blanco rosado, con textura grano-bálsica y compuestos por cuarzo, feldespato potásico y plagioclasa, y pequeñas cantidades de granate, sillimanita y biotita.

Rocas granulíticas aparecen asociadas a complejos máficos. Las granulitas son rocas metamórficas que se caracterizan por la baja proporción modal de minerales hidratados, tales como biotita y/o anfiboles. Yacen como septos incluidos dentro de cuerpos gábricos o bien como bancos entre los lentos máficos. Granulitas hornblende-hiperstécnicas afloran en la zona del cerro Pelado y están asociadas con metasasitas hornblende-hiperstécnicas con restos de olivino. Otros afloramientos de granulitas noríticas han sido citados al oeste de Amboy, donde se asocian con anatexitas cordieríticas (Gordillo, 1984). También en el río Grande, a la altura del puented de la ruta 23, asoman gneises hornblende-hiperstécnicos con transiciones a granulitas noríticas oscuras al aumentar el contenido de mafitos. Las granulitas piroxénicas asociadas a los complejos máficos de Sol de Mayo y Suya Taco han sido estudiadas por Tibaldi et al. (2007), allí presentan la asociación mineral Qtz + Pl+ Grt + Opx + Cv + Sil + Spl, con biotita o flogopita y antofilita retrogradas, y ausencia de feldespato alcalino. Dicho autores establecieron además, que las condiciones de presión - temperatura del metamorfismo prógromo fueron entre 6 y 8 kbar y 780 - 930 ºC, asumiendo que la intrusión del complejo máfico habría sido coetánea con el pico de presión de las migmatitas regionales.

En el camino que comunica Atos Pampa con Yacanto, próximo al río Santa Rosa (64°43’36”O 32°02’36”S), Gordillo (1979) describió una roca de estructura maciza y color gris azulado, constituida por abundante granate, cordierita y magnetita, sin feldespato potásico y escasa de biotita, que clasificó como kinzigita. La roca es considerada una restita del proceso anatéctico. A la fecha existe una cantera donde se ha realizado la explotación de este material con fines ornamentales (Cantera Juan XXIII).

Entre Lutti y Rio de Los Sauces se han cartografiado sectores donde afloran gneises macizos de color gris claro y débil foliación que dan un paisaje bochiforme (1d). Estas rocas tienen una textura equigranular de grano medio donde se destacan algunos cristales euhedrales de plagioclasa de hasta 1 cm, abundante biotita y presencia variable de gra-
nate (figura 4). En las variedades biotíticas de gra-
no más fino se observa un bandeado y foliación poco
marcada. Los gneises macizos están compuestos
principalmente por cuarzo, plagioclasa, biotita y gra-
nate, aunque también suele presentarse feldespato
potásico o escasa sillimanita. Como accesorios hay
apatita, circón, minerales opacos y rutilo. Estas ca-
racterísticas y la presencia de enclaves de rocas
gnésicas, han llevado a clasificarlas como ortogneises biotítico granatíferos, con una composi-
ción modal entre granodiorítica y tonalítica
(Guereschi, 2000).

Al sur Alpa Corral, el complejo está formado
por paragneises afectados por la deformación
milonítica de la faja de cizalla Tres Árboles- Las
Albahacas. Allí son muy comunes los pods
abudinados de anfibolitas (1e) y pequeños lentes
de mármolos y rocas calcisolíticas (1f). La roca
más abundante es un gneis bandeado color gris, for-
mado por cuarzo- plagioclasa- biotita- feldespa-
tosico- muscovita + sillimanita + granate. El gneis
contiene lentes leucosomáticos y en muchos lugares
la textura es migmatítica.

Rocas metaígneas (1i) cartografiadas bajo la
denominación de Metamorfitas Monte Guazú
(Otamendi et al., 1996) y como ortogneises
tonalíticos dentro del Complejo Metamórfico Monte
Guazú (Sims et al., 1998; Otamendi et al., 2000),
afloran como grandes cuerpos desmembrados por
cizallamiento y emplazados armónicamente con la
foliación de los paragneises que los contienen. Es-
tos cuerpos son particularmente abundantes al sur
del cerro Moro, y llegan a constituir el 50 % del
complejo en los sectores más australes. La roca tie-
ne una composición tonalítica a granodiorítica,
equigranular, de color gris, formada por plagioclasa,
cuarzo, biotita y cantidades variables de hornblenda
y, como accesorios, incluye circón, apatita, allanita
y magnetita. Suele aparecer muscovita secundaria
como porfiroblastos o como una fase microcrystalina.

Las metatonalitas presentan una foliación penetrativa
definida por la orientación de biotita acompañada
por una lineación débil de láminas de biotita y cintas
de cuarzo.

Numerosos cuerpos de anfibolita (1e) aparecen
intercalados concordantemente con estromatitas,
gneises y mármoles. Por lo general se trata de ban-
cos alargados que suelen alcanzar anchos impor-
tantes. Debido a su gran resistencia forman crestas
que sobresalen en el paisaje. Las rocas son de color
verde oscuro, granulometría fina a media y una es-
tructura foliada o bandeada (figura 5). Están compu-
puestas principalmente por hornblenda (anfibol) y
plagioclasa, con pequeñas proporciones de cuarzo.
Según la asociación mineralógica se distinguen
anfibolitas hornblende- diopsídicas, hornblende-
titaníferas y anfibolitas diopsídicas con granate
(Guereschi, 2000). Una importante faja de anfibolitas,
con una orientación N-NO y que alcanza anchos de
5 km, se extiende al este del plutón del cerro Áspes-
ro. Dentro de esta faja, Mutti et al. (2002) han re-
conocido una alternancia de anfibolitas
melanocráticas y leucocráticas con estructuras ma-
cizas, migmatáticas y esquistosas, compuestas por
hornblenda + plagioclasa ± clinopiroxeno ±
ortopiroxeno ± granate ± cuarzo ± feldespa-
tosico ± biotita ± circón ± apatita ± titanita ±
espinoelo verde ± magnetita ± ilmenita. Han sido afectadas por
la faja de cizalla Tres Árboles dando lugar a milonitas
máricas, biotítico- cloríticas y generación de
leucosomas laminares a nodulares. Según Mutti et
al. (2002), la geoquímica de estas rocas indicaría

Figura 4: Complejo metamórfico Comechingones. Ortogneis granodiorítico- tonalítico. foliación 80/65. Aspecto del afloramiento y
detalle textural. Rodeo de Las Yeguas. Punto 226, 64°48’7,064”O, 32°22’39,561”S.
un protolito basáltico (ortoanfibolitas) desde toleítico hasta calcoalcalino, equivalente a basaltos centrooceánicos MORB.

Los mármoles (1f) forman bancos tabulares y lentícolares a lo largo de fajas semicontinuas, plegadas, engrosadas y transpuestas. Los mayores afloramientos de mármol han sido identificados individualmente en el mapa. Los cuerpos principales se ubican al norte de Yacanto de Calamuchita, en Cañada de Alvarez, en la zona de la estancia Los Cocos, al oeste del cerro San Lorenzo y, más al sur, en el cerro Moro. Los bancos de mármol se presentan bandeados, con coloraciones variables entre blanco, rosado, verde y gris, como así también el tamaño del grano, que cambian de fino y grueso. En el sector de Cañada de Álvarez están los mayores afloramientos alineados en sentido noroeste, formando una lomada alargada conocida como sierra Blanca, con un largo de 3, 5 km y anchos variables que llegan a los 600 metros. Los mármoles están intercalados con gneises biotíticos granatíferos y anfibolitas diopsídicas (figura 6). Composicionalmente varían entre mármoles dolomíticos y calcodolomíticos (Guereschi, 2000). Los mármoles dolomíticos tienen un color blanco níveo, blanco amarillento o blanco grisáceo, de granulometría media a gruesa, con bandeado leve e irregular. Están compuestos casi totalmente por dolomita, con calcita subordinada y escasos minerales accesorios. Localmente aparecen pátinas color verde turquesa y fracturas relle- nas de cuarzo y malaquita que atraviesan la roca.

Al microscopio los mármoles presentan una textura granoblástica, suturada, inequigranular y en mortero, dada por la trituración y recristalización perigranular de la dolomita. En los mármoles dolomíticos, la dolomita de grano grueso es el principal constituyente, acompañada por escasa calcita intersticial y de grano fino; los accesorios son tremolita, flogopita, rarefriiterita y escasa diópsido, serpentina, clinocloro, apatita y escasos minerales opacos. Los mármoles calcodolomíticos, compuestos por cantidades similares de dolomita y calcita, presentan una textura bandead formada por la alternancia de capas blancas, amarillentas y capas verdosas o pardas. Las bandas verdosas formadas por forsterita serpentinizada suelen ser más delgadas y resaltan por erosión diferencial. Los principales minerales accesorios son forsterita, diópsido, tremolita, flogopita, serpentina y raramente espinelo. En menor proporción se encuentra apatita, minerales opacos, minerales de cobre y clinocloro (Guereschi, 2000).

En el sector de la estancia Los Cocos, al oeste del cerro San Lorenzo, los mármoles se disponen en fajas nor-sur y están suavemente plegados. Cada
faja está integrada por varios bancos de mármol de potencia variable (2 a 100 m), que pueden seguirse a lo largo de 3 a 4 km, donde se intercalan con bancos de anfibolitas, esquistos biotítico-granatíferos y gneises miloníticos. En esta zona, Guereschi (2000) identificó mármoles dolomíticos flogopíticos y mármoles calcodolomíticos forsterítico-diopíricos.

En la sierra de Comechingones los mayores afloramientos de mármol se encuentran en el cerro Moro (64°58’30.77”O, 32°52’49.19”S) y en los alrededores de la estancia La Fátima, donde mármoles y gneises calcosilicáticos forman cuerpos aislados más o menos alineados siguiendo la macroestructura de basamento con un rumbo noroeste.

Las rocas ultramáficas (1g) se hallan dentro de zonas de cizalla dúctiles como lentes alargados, ple-gados y desmembrados. Estas rocas fueron citadas por numerosos autores en relación con la explotación de minerales de cromo (Catalano, 1943; Angelelli, 1945; D’Aloia y Bianucci, 1969). Desde el punto de vista petrográfico fueron estudiadas por Villar (1985), Fernández Gianotti (1977), Ramos (1988), Bonalumi y Gigena (1987), Cosentino y Mutti (1982), Mutti (1987, 1992), Mutti y Di Marco (1992) y Escayola et al. (1993), entre otros. Los afloramientos alineados con rumbo NO entre el cerro San Lorenzo y Suya Taco, fueron descritos por Villar (1985) como «faja ultrabásica occidental de las Sierras de Córdoba». Los cuerpos están compuestos principalmente por harzburgitas intruidas por dikes basálticos -que producen metasomatismo- y dunitas. La harzburgita tiene granulometría media a gruesa y está compuesta por cristales de enstatita bastitizada de color pardo. Presenta estructuras relicóticas ple-gadas con planos axiales coincidentes con la folia-ción principal. La matriz es afanítica y está formada por serpentina de coloración oscura. Como producto de alteración se han formado serpinitas de color gris medio a oscuro y tonalidades verdosas en las que se pueden observar finas bandas con disemina-dos de cromita y magnetita. Las rocas ultramáficas suelen presentar cuerpos podiformes de cromitas concordantes a subconcordantes que han sido explotados en los yacimientos Los Guanacos, Los Congos y Sol de Mayo.

Las rocas metagábricas (1h) están dispuestas al este de la «faja ultrabásica». Forman cuerpos de dimensiones variables, entre los que se destacan el de Santa Rosa de Calamuchita, con una superficie de 1, 9 km² y el del cerro San Lorenzo de 5 km². Los contactos son concordantes con la foliación envolvente de las cajas metamórficas. Los princi-pales afloramientos son el cerro San Lorenzo (64°36’40”O 32°28’14”S), gabros de rio Grande (64°33’47”O 32°13’30”S), canteras Champaqui (64°36’55”O 32°02’21”S), Atum Pampa (64°42’34”O 32°04’48”S) y Suya Taco (64°42’09”O 32°01’08”S). En el sector sur se des-taca un pequeño cuerpo al este de la estancia Los Chañares (64°54’22”O 32°56’58”S).

El gabro del cerro San Lorenzo es un cuerpo ovoi-de de 2 x 3 km, que presenta una estructura estratificada formada por tres tipos de cumulatos dife-rentes: plagioclasa-olivino, plagioclasa-clinopiro-xeno-ortopiroxeno y cumulado de plagioclasa-clinopiroxeno. Además existen filones de gabro cuarzoso concordantes con la estratificación, forma-dos por plagioclasa-clinopiroxeno y cuarzo inter-cumular (Villar et al., 1993; Chincarini, 1995, Chincarini et al., 1996). En la parte central del cuerpo predomina un gabro hipersténico- olivínico (gabros corónicos de Toselli et al., 1977) que hacia la periferia alterna con gabro hipersténico en fajas de espe-sor variable. La zona marginal muestra evidencias claras de metamorfismo retrógrado con el desarrollo de anfibol que respeta la textura ignea original: un núcleo corrido de olivino rodeado de broncita granular y una simplectica externa de hornblenda más espesino que se desarrolla a expensas de plagioclasa (Toselli et al., 1977; Villar et al., 1993).

Los cuerpos de rio Grande, canteras Champaqui y Atum Pampa están formados por gabros olívico-ronicos y gabronoritas hornblédicas. Los gabros olívicos se caracterizan texturalmente por la pre-sencia de fenocrístales de olivino rodeados por una corona de ortopiroxeno- anfibol en una matriz con-formada por un mosaico de plagioclasa-ortopiroxeno. Son rocas melanocráticas muy tenaces constituidas por olivino, piroxeno, plagioclasa, hornblenda marrón y biotita fuertemente pleocroica con exfoluciones de magnetita (Bonlalumi y Gigena, 1987; Escayola, 1994), presentan también abundante ilmenita asociada a magnetita con alteración parcial a hematita marritizada, «ojos» de goethita y cromita con partículas de magnetita como desmezcla y blebs submicroscópicos de sulfuros, escasa marcasita y oro nativo que aparecen diseminados junto con sulfuros (Escayola, 1994). Las gabronoritas hornblédicas están compuestas por plagioclasa, ortopiroxeno, clinopiroxeno, apatita, biotita y hornblenda; tienen textura granular hipidiomórfica y texturas subofíticas donde el piroxeno rodea parcialmente a la plagioclasa, este último mineral no se encuentra como tablillas euhédricas sino como crista-les redondeados, subhédricos y con texturas zonadas.
y en algunos casos maclas. La roca presenta una leve alteración a epidoto y calcita (Escayola, 1994). La blastesis de hornblenda, que llega a desarrollar cristales de hasta 10 centímetros de largo, es un indicador de metamorfismo en facies anfibolita.

En la zona sur de la sierra de Comechingones, las rocas metamóficas están intercaladas en las metamorfitas del complejo, formando pods aislados o láminas discontinuas que han sido desmembradas por cizalla. Los cuerpos individuales tienen tamaños entre pocos metros a un kilómetro de largo. En los cuellos del boudinage es común observar segregados pegmatíticos. La litología principal es una ortoanfibolita formada por hornblenda débilmente alineada, plagioclasa y cuarzo, con cantidades menores de titanita. También están presentes en pequeñas cantidades diópsido, carbonato, muscovita, feldespato potásico y epidoto. Poseen características similares a los metagabros de Sol de Mayo e Inti Yaco que afloran al norte de Yacanto de Mayo e Inti Yaco, y han sido interpretados como tholeitas con afinidades intraplaca que habrían generado de fundidos es coetánea con la deformación. El evento siguiente D1c consiste en una deformación no coaxial repartida en zonas de alto y bajo esfuerzo. En las zonas de alto esfuerzo se desarrollan fajas de cizalla extensionales donde se incrementa la formación de fundidos y se las ha vinculado con la descompresión isotérmica de la pila cortical (Otamendi et al., 1999).

La deformación famatiniana orдовícica D2 retrabajó las zonas de cizalla D1c, dando lugar a fajas de milonitas con diferentes orientaciones que se cruzan unas con otras anastomosadamente. Las fábricas metamórficas de grado medio son mayormente rotadas al paralelismo como consecuencia de la deformación D2 manifestada en planos de cizalla penetrativos y zonas de alta deformación, como las fajas de cizalla Tres Árboles - Las Albahacas. Las fábricas miloníticas S2 tienen un rumbo NNO que no se distingue fácilmente de la foliación gnésica S1 debido al carácter progresivo de la deformación, pero están concentradas en fajas discretas. Estas zonas miloníticas delinean el borde oeste del Complejo Metamórfico Comechingones, pero también aparecen como fajas angostas separando seíntas de rocas gnésicas.

Relaciones estratigráficas

El Complejo Metamórfico Comechingones representa las áreas más profundas y de mayor grado metamórfico de las sierras de Córdoba. En la unidad se observan relaciones de superposición de procesos deformativos y fusión parcial del protolito, con leucosomas orientados paralelamente a la foliación principal S1p, que cortan y rotan «resisters» cuarzo biotíticos en los que se distinguen finas bandas de diferente composición (S0//S1p), apretadamente plegadas en chevrón.

Las fábricas con metamorfismo de grado medio están mayormente rotadas al paralelismo como...
consecuencia de la deformación posterior mani- tada en planos de cizalla penetrativos y zonas de alta deformación, como la faja Tres Árboles-Las Albahacas. La reactivación de estas estructuras ha producido una retrogradación metamórfica que podría asignarse al ciclo Famatiniano.

El complejo está afectado por el cizallamiento S3 e intruido por los plutones de Achala y Cerro Áspero con sus diques aplo-pegmatíticos, todos ellos atribuidos al ciclo Achaliano de edad devónica.

Edad y correlaciones

El Complejo Metamórfico Comechingones es correlacionable con los complejos metamórficos Sierra Chica, Atos Pampa y La Falda (Bonalumi et al., 1998; Gaido et al., 2005; Candiani et al., 2008) y con el Complejo Metamórfico Monte Guazú (Sims et al., 1998), que agrupan la mayor parte de las asociaciones metamórficas de las Sierras de Córdoba.

Los protolitos sedimentarios se habrían depositado en una cuenca oceánica en el Neoproterozoico. Sobre la base de estudios geocronológicos Rb-Sr, Nd-Sm y U-Pb en circones, Rapela et al. (1998) determinaron una edad cámbica inferior de 530 Ma para el evento metamórfico principal de las sierras de Córdoba.

2.1.2. CÁMBRICO- ORDOVÍCICO

Complejo Metamórfico Conlara (2a, 2b)

2a esquistos y gneises; 2b mármoles.

Antecedentes

Distribución areal

El complejo metamórfico abarca una gran parte del basamento aflorante en la sierra de San Luis y el valle de Conlara, incluyendo parte del pie occidental de la sierra de Comechingones. El límite oeste del complejo ha sido definido por el lineamiento magnético y la zona milonítica, conocida como cizalla Río Guzmán, que lo separa de la Formación San Luis y del Complejo Metamórfico Pringles (Sims et al., 1997). Su límite oriental corresponde a las zonas de cizalla Tres Árboles y Las Lajas que lo separan del Complejo Metamórfico Comechingones.

En el valle del Conlara, gran parte de la unidad está cubierta por sedimentos cenozoicos.

Litología y estructura

La roca dominante es un esquisto bandeado formado por dominios ricos en biotita (junto con plagioclásica, cuarzo, minerales opacos, apatita, círcon y blastos alargados de muscovita) y dominios cuarzo-c- metapsamíticos, compuestos por plagioclásica, cuarzo y algo de biotita, con grane relíctico en algunos lugares. Numerosos filones granítico-pegmatíticos intruyen el complejo y en algunas zonas las rocas muestran una intensa migmatización (figura 7). En menor proporción es posible observar mármoles y antifibolitas.

Los esquistos son rocas bien foliadas de color gris oscuro, a veces bandeadas debido a las segregaciones cuarzo-feldespáticas que dan lugar a texturas migmatíticas. Presentan una asociación Qtz-Fel-Bt-Ms+Grt-Sil (más Tur+Chl). La foliación es marcada por biotita y muscovita; está plegada a escala macro y mesoscópica con lóbulos asimétricos que indican una vergencia hacia el oeste. La presencia de granates fuertemente corridos por coronas de sillimanita-biotita y poiquiloblastos de muscovita y cuarzo que contienen inclusiones crenuladas de sillimanita, sugieren que una fábrica de baja temperatura se ha superpuesto a una de alta temperatura (facies anfibolita). La biotita y muscovita definen una lineación mineral que generalmente inclina al este y los indicadores cinemáticos muestran un desplazamiento en compresión «este hacia arriba», que es compatible con la asimetría del plegamiento. Localmente se ha preservado un cizallamiento en extensión con un sentido «este hacia abajo», particularmente en las proximidades del borde oeste del complejo donde la fábrica se asocia con fajas migmatíticas y abundantes pegmatitas.

Los gneises metapelíticos y metapsamíticos están formados por Qtz-Fel-Bt+Ms+Grt+Sil. Se distinguen claramente de los esquistos por su escasez de muscovita en el plano de foliación y un estilo de afloramiento macizo. Cuando se desarrolla muscovita secundaria no presenta orientación o está relacionada con discretas bandas de cizalla, siempre asociada a biotita. Venas leucocráticas y/o pegmatíticas son muy comunes en este tipo de rocas y definen la foliación principal, plegada apretada e isoclinalmente (y replegada) a escala meso a microscópica.

Whitmeyer y Simpson (2004) marcaron dentro del Complejo Metamórfico Conlara isogrades de sillimanita-granate, biotita y clorita y zonas con migmatización local. A escala regional observaron un plegamiento post metamórfico, con las filitas ocupando los núcleos sinformes y los esquistos migmatíticos los núcleos antiformes.

Los mármoles y rocas calcosilicáticas (2b) son escasos. En la sierra de la Estanzuela, Fernández Lima et al. (1981) describieron mármoles de composición calcítica a magnesiana que forman cuerpos tabulares dispuestos con orientación N-S, con longitudes entre 1 a 8 km y potencias de decenas de metros. Las rocas presentan coloración variada desde blanca verdosa hasta amarillenta grisácea, rosada y parda, tienen textura granoblastica y están compuestas por dolomita, calcita, diópsido, muscovita, antigorita, sericita, arcilla, grafito y opacos. Explo-
cas de composición tonalítica a granodiorítica y yace como pequeñas lentes intercaladas en los esquistos, aunque algunos cuerpos pueden alcanzar decenas de metros. Se presentan típicamente bandeado, con granulometría media y una distribución irregular de la biotita en el plano S2, formando agrupaciones de hasta varios centímetros. Los cuerpos de composición granítica forman filones de anchos métricos, desmembrados e intercalados repetidamente entre los gneises. Son rocas bien foliadas de color blanco a rosado, textura equipiagonal de granulometría media, compuestas por Qtz-Fel-Bt (Ms). La foliación interna parece coincidir con la fábrica de las rocas de caja sugiriendo que los granitoides se habrían emplazado durante la deformación D2 de la orogenia Famatiniana. Numerosos cuerpos pueden observarse al oeste de Paso Grande, en la zona de La Ciénaga y estancia El Porvenir (figura 8).

Varias generaciones de pegmatitas Qtz-Fel-Bt + Ms + Tur+ Grt, intruyen al Complejo Metamórfico Conlara. La generación más temprana está fuertemente deformada, elongada y boudinada en los esquistos y gneises. Suelen formar voluminosos cuerpos de contactos paralelos a la foliación penetrativa S2 (figura 9 a). Algunos filones pequeños resultaron fuertemente plegados durante D2 y fueron replegados durante D3. Las generaciones posteriores de pegmatitas cortan la foliación del complejo y se relacionan espacialmente con los granitos devónicos (figura 9 b).

Las condiciones de pico metamórfico son sincrónicas con la deformación D2, seguidas por una descompresión indicada por las coronas de plagioclase alrededor de granos de granate de los esquistos y ortogneises (López de Luchi *et al.*, 2008). Un evento deformativo posterior está representado por zonas de cizalla discontinuas dentro de los esquistos y metagranitoides, con presencia de Se-Qtz+Chl.

Relaciones estratigráficas

El Complejo Metamórfico Conlara está intruido por plutones ordovícicos, como el Granito El Peñón, por granitos devónicos que cortan la foliación principal de las metamorfitas y por el vulcanismo calcoalcalino neógeno del Complejo Volcánico El Morro. Está sobrecerrado en sentido Este sobre Oeste por el Complejo Metamórfico Comechingones a través de las zonas de cizalla Tres Árboles y Las Lajas. A lo largo de la zona de cizalla Río Guzmán, el Complejo Metamórfico Conlara se sobrecorre hacia el Oeste y desplaza sinistralmente contra las filitas de la Formación San Luis.

Edad y correlaciones

Una datación sobre monacita metamórfica de un gneis no cizallado, obtenida al oeste de la zona de...
cizalla Tres Árboles, a la latitud de Merlo, arrojó una edad de 453 ± 2 Ma (comunicación verbal de P. Gromet en Whitmeyer y Simpson, 2003). Otras edades corresponden a pegmatitas, como por ejemplo las edades K-Ar sobre muscovita de pegmatitas turmalíniferas, que dan entre 430+10.4 y 421+9.9 Ma (López de Luchi et al., 2002).

Según Fagiano et al. (2008), el Complejo Metamórfico Conlara es producto de procesos petrogenéticos ocurridos exclusivamente durante un estado del Ciclo Orogénico Famatiniano y los sedimentos de su cuenca premetamórfica han sido interpretados como un prisma de acripción construido con posterioridad al desarrollo del orógeno Pampeano, cuya área fuente, precisamente, habrían sido las rocas del arco magmático Pampeano y los metasedimentos cámbricos que forman su roca de caja. Este nuevo complejo de subducción se habría formado en tiempos post-Pampeanos, previamente al magmatismo de arco Famatiniano. Los citados autores determinaron para el orógeno Famatiniano dos fases de deformación y metamorfismo (D1 M1 – D2 M2). El evento metamórfico M1 (T ~ 420 – 530 ºC y P < 5 Kbar) se habría desarrollado en la parte media a alta de esquistos verdes (zona biotita).

Sims et al. (1997) interpretaron que el Complejo Metamórfico Conlara deriva de sedimentitas del Cámbrico inferior que fueron metamorfizadas durante el Paleozoico inferior a medio. Le asignaron al complejo una edad cámbrica, basándose en dataciones U-Pb sobre circón y monazita metamórficos obtenidos en las sierra de Córdoba (Lyons et al., 1997) que dieron una edad ~530 Ma (Camacho e Ireland, 1997).

Para Steenken et al. (2006), la edad mínima para la depositación del complejo, sobre la base de una datación U-Pb SHRIMP en circones detríticos, sería de 587+7 Ma. Otras dataciones sugieren que las condiciones de pico metamórfico se habrían alcanzado durante la Orogenia Pampeana (Steenken et al., 2005, 2006, 2007), quienes también observaron xenolitos de esquistos bandeados dentro del Granito El Peñón, con una foliación interpretada como D2 y una edad de 497+8 Ma (Steenken et al., 2006), lo que relacionaría el Complejo Conlara con el evento Pampeano cámbrico.

El Complejo Metamórfico Conlara podría correlacionarse con al menos una parte de las metamorfitas cartografiadas bajo la denominación de Gneises y esquistos Mojigasta (Bonalumi et al., 1998 y Guido et al., 2005), aflorantes más al norte en el borde oeste de las sierras de Córdoba. Complejo Metamórfico Pringles (3a, 3b)

Antecedentes

Distribución areal

El Complejo Metamórfico Pringles aflora en el sector oeste de la hoja, entre Quines y La Carolina, formando una faja de orientación N-S entre el Complejo Metamórfico Conlara al Este y el Complejo Metamórfico Nogolí al Oeste.

Litología y estructura

Las rocas que componen el Complejo Metamórfico Pringles son esquistos y gneises formados a partir de protolitos pelítico- psamíticos y de rocas maficas. Dentro del complejo se observan cuerpos de ortogneises granodiorítico-tonalíticos, metacuarcitas, anfíbolitas, rocas calcosilicáticas y rocas ultrabásicas.

Los gneises están variablemente inyectados por venas y diques graníticos, pegmatíticos y aplíticos, pudiendo gradar a migmatitas (Sims et al., 1997; von Gosen y Prozzi, 1998). Los gneises representan los dominios donde se han preservado paragénesis de mediano a alto grado (facies anfíbolita y granulita). Contienen cuarzo-feldespato- granate-sillimanita- biotita- magnetita +cordierita +espinelo. Afloran como rocas macizas, con un bandeado composicional que inclina con alto ángulo hacia el este y con una lineación mineral de igual buzamiento, definida por sillimanita + biotita (figura 10). El granate es típicamente porfiroblástico y junto con la cordierita se presenta intercrecido con feldespato potásico dentro de los leucosomas. Los leucosomas cortan el bandeados composicional y están generalmente aplastados en el plano de foliación y elongados paralelamente a la lineación de extensión. Por otro lado, pegmatitas cordieríticas cortan la fábrica gnésica y son interpretadas como producto de fusión del proceso generador de leucosomas.

Los gneises presentan bandas de milonitas de alto grado que localmente contienen la asociación cordierita- sillimanita y ocasionalmente sobrecrecimientos de granate euédrico a escala milímétrica, con inclusiones en forma de espiral. Las
milonitas, al igual que los gneises, tienen lineaciones de estiramiento mineral. Los indicadores cinemáticos, tales como fábricas S/C y porfiroclastos rotados, señalan un movimiento con vergencia al Oeste.

Los contactos entre gneises y esquistos son transicionales, y es allí donde aparecen numerosos filones y venas de pegmatitas ricas en cincopirita en formación de foliación de unidades pelíticas y psamíticas. Esto no es tan evidente en los sectores de mayor grado metamórfico dentro del complejo.

Los filones de pegmatita con turmalina-apatita- granate +berilo, son abundantes en las zonas esquistosas y están asociados a intrusiones de leucogranito tipo S. Estas intrusiones se presentan en fajas donde se ha desarrollado una fábrica de cizalla con buzamiento al Este, con una línea de foliación que inclina moderadamente al SE y un sentido de movimiento en dirección al Oeste. La fábrica está definida por muscovita- biotita ± clorita, mientras que la línea de foliación está localmente marcada por turmalina. Los filones de pegmatita están fuertemente plegados y boudinados dentro de estas fajas. La foliación de los metamorfos también está plegada y transpuesta, y la sillimanita está reemplazada por muscovita poiquilitica+cuarzo y pequeñas hojas de muscovita. En algunos lugares, agujas de turmalina crecen sin orientación sobre la foliación secundaria. De estos cuerpos, a modo de boudines, estarían representando delgadas unidades carbonáticas originalmente continuas.

Cuerpos metamórficos con hornblende+ ortopiroxeno+ clinopiroxeno se presentan estirados y desmembrados tectónicamente dentro de los paragneises. Contienen una foliación paralela a las cajas y a su vez los cuerpos individuales están elongados paralelamente a la línea de estiramiento de los gneises. En los cuellos del boudinage suelen contener segregados de pegmatita. Los margeones de los cuerpos mayores, y muchos de los más pequeños, presentan una recristalización paragénesis metamórficas de alto grado homblenda-piroxeno. Algunos cuerpos conservan sus núcleos con texturas ignea relicticas. Esto implica que las rocas máficas y ultramáficas se habrían intruido sincrónicamente con la deformación regional. Las rocas máficas y ultramáficas forman parte de lo que Sims et al. (1997) denominaron Grupo Las Águilas. Composicionalmente corresponden a dunitas, piroxenitas y hornblenditas. El ortopiroxeno es el mineral primario más abundante, acompañado de olivina, plagioclasa, clinopiroxeno, espinelol (cromita) y sulfuros (pirritina, petlandita y calcopirita). El olivino está parcialmente alterado a serpentina, mientras que el clinopiroxeno es reemplazado por clinoanfibol. La flogopita se desarrolla a favor de los planos de deformación. Marcasita, covelita y pirita aparecen como sulfuros secundarios. Dentro de la hoja sólo se han reconocido dos de estos cuerpos en los alrededores del cerro Intihuasi.

Las anfibolitas son más numerosas. Están constituidas por hornblenda y plagioclasa, con o sin ortopiroxeno, cantidades menores de cuarzo y fases accesorias (apatita, titanita, ilmenita y magnesita). La hornblenda primaria es reemplazada por clinopiroxeno y la secundaria reemplaza al ortopiroxeno. Otras fases secundarias incluyen epidoto, zoisita, clinzoisita y calcita.

Metavulcanitas de composición andesítica y riolítica se presentan como filones concordantes con los esquistos cuarzo-ferrosopticos, formando cuerpos de alrededor de 1 m de potencia y que pueden alcanzar largos entre 50 y 300 metros. Brodtkorb et al. (1984) y Ortiz Suárez et al. (2009) denominaron metaandesitas (anfibolitas) a las rocas de color verde oscuro, macizas, con textura porfírica relictica, formadas por blastofenocristales de hornblenda en una matriz granoblastica formada por cuarzo, plagioclaza y biotita; y denominaron metariolitas a las rocas de color blanco amarillento a gris claro, con textura blastoporfírica, donde distinguieron fenocristales relicticos de cuarzo,
Villa de Merlo

feldespato potásico y plagioclasa y porfiroblastos de muscovita, biotita y granate. Dichos autores también reconocieron pequeños cuerpos de turmalinitas de color negro y grano fino, formados por la alternancia milimétrica de bandas cuarzosas claras y otras ricas en turmalina color oscuro, que forman una laminación dispuesta según la foliación de los esquistos. Brodtkorb et al. (1984) sugirieron que la presencia de las metavulcanitas indicaría una actividad volcánica premetamórfica y que las turmalinitas serían expresiones exhalativas de dicho episodio. Las rocas del Complejo Metamórfico Pringles sufrieron un metamorfismo de grado medio, con un pico térmico granulítico producido por la intrusión de las rocas máficas y ultramáficas asociadas a la zona de cizalla La Arenilla (González Bonorino, 1961; Sims et al., 1997; Hauzenberger et al., 2001). De acuerdo con los estudios realizados por Hauzenberger et al. (2001), el grado metamórfico del Complejo Pringles se ubicaría entre las facies de esquistos verdes y de anfibolita (570-600°C y 5-5.7 kbar) y localmente en la facies de granulita (740-790 °C 5.7-6.4 kbar). Los granitoides concordantes con la caja metamórfica presentan una asociación mineral cuya temperatura de formación es coincidente con la de los minerales metamórficos, que corresponden a una facies de anfibolita baja. El desarrollo de porfiroblastos de muscovita, tanto en la caja como en los granitoides, podría indicar una recristalización por cizallamiento y por efecto térmico asociado a la intrusión de los granitos devónicos.

Relaciones estratigráficas

El Complejo Metamórfico Pringles involucra metasedimentitas con una edad de deposición entre el Cámbrico y el Ordovícico inferior. Las sedimentitas fueron intruidas por las rocas máficas y ultramáficas del Grupo Las Águilas alrededor de los 480 Ma, y por numerosos cuerpos de granito y pegmatitas. El análisis de circones obtenidos de un ortogneis félsico y de monacita de un gneis granatífero sillimanítico, fueron interpretadas como la edad del metamorfismo regional (Sims et al., 1998). Los datos de los núcleos de circones, con distribución de picos entre el Neoproterozoico y el Cámbrico temprano (Sims et al., 1998) fueron considerados como correspondientes a procesos del ciclo Pampeano en el área fuente, en especial el pico más importante a los 530 Ma. Los leucogranitoides contenidos en el Complejo Metamórfico Pringles, en la zona Loma Alta- Santo Domingo, estudiados por Llambías et al. (1991) han sido datados en 454+21 Ma (Rb-Sr roca total). Por otro lado, Steenken et al. (2007) asignaron una edad cámbica superior- ordovícica inferior a las facies granulíticas del Complejo Pringles, basándose en una datación U-Pb de 498+ 10 Ma. La edad del Grupo Las Águilas has sido definida por dataciones U/Pb de circones obtenidos de los segregados félsicos asociados con las rocas ultramáficas. Los circones de estas fases tardías proveen una edad de cristalización de 478 ± 6 Ma (Camacho e Ireland, 1997).

2.1.3. ORDOVÍCICO

Formación San Luis (4a, 4b)
4a pizarras, filitas y metavulcanitas; 4b metaconglomerados.

Antecedentes

La unidad fue descrita conjuntamente con otras rocas esquistosas de los complejos metamórficos (Pastore y González, 1954; Kilmurray y Villar, 1981). La denominación Formación San Luis se debe a Prozzi y Ramos (1988), quienes además diferenciaron subunidades denominadas pizarras Santo Domingo, metaconglomerado Cañada Honda, metavulcanitas, metapsamitas, metapelitas y filitas. Un estudio de las metavulcanitas fue realizado por
Brodtkorb et al. (2009). Si bien Santa Cruz (1979) utilizó igual denominación para una unidad sedimentaria cuaternaria, se considera prudente mantener dicho nombre para esta unidad paleozoica ya que es de uso muy frecuente en numerosas publicaciones.

Distribución areal

La Formación San Luis aflora como dos fajas orientadas con rumbo NNE a lo largo de la sierra de San Luis. La más oriental se extiende desde Loma Alta hasta La Totora, donde es cortada por el batolito Las Chacras. Otros afloramientos menores forman fajas al este del cordón de El Realito, y más al norte, en el camino entre Quines y Zapallar. En la zona de trabajo, la Formación San Luis alcanza un ancho máximo de 7 km en sentido Este Oeste a la latitud de Paso del Rey. Buenas exposiciones de la unidad filítica pueden observarse en un tramo del camino que pasa por la estancia Los Cerros Largos; lo mismo que en la ruta que comunica este último lugar con la localidad de Las Chacras y, por la huella que va desde Paso del Rey hacia la zona de Santo Domingo, donde existen varias canteras en las que se explotan las pizarras para su uso como piedra ornamental (figura 11).

Litología y estructura

La Formación San Luis está compuesta por capas de filitas y meta areniscas en proporciones variadas, acompañadas por metavulcanitas ácidas. La unidad meta conglomerádica conocida como Metaconglomerado de Cañada Honda (Ortiz Suárez et al., 1992) está intercalada en esta formación y suele alcanzar anchos de hasta 100 metros. En algunas zonas donde la roca tiene una granulometría más gruesa, es posible ver estructuras sedimentarias como estratificación gradada y entrecruzada.

La filita está formada predominantemente por cuarzo, clorita y sericita con proporciones menores de carbón orgánico (Prozzi y Rosso, 1990) y contiene cristales euahedral de calcita y pírita secundarios. Las delgadas cuarcitas contienen cuarzo, clorita y pequeñas cantidades de muscovita, con calcita y epidoto como minerales secundarios. El conjunto es cortado por venas delgadas de cuarzo + pírita.

El Metaconglomerado de Cañada Honda consiste en clastos angulosos de metacuaritas y filitas de tamaño centímetro, inmersos en una matriz de grano fino a grueso (figura 12). Ortiz Suárez et al. (1992) observaron también la presencia de clastos de rocas meta volcánicas de composición riolítica y dacítica. Las intercalaciones de capas delgadas y discontinuas de meta areniscas y metapelitas, muestran estructuras en artesa y estratificación gradada. Una foliación milonítica anastomosada se desarrolla paralela a la estratificación del conglomerado y la mayoría de los clastos de cuarcita están recristalizados. La foliación milonítica es cortada subparallelamente por un clivaje que produce una superficie de crenulación.

Siguiendo a Brodtkorb et al. (2009), las metavulcanitas forman cuerpos elongados y concordantes con las parametamorfitas, y como habrían sido afectadas por los mismos procesos metamórficos, se las considera sinsedimentarias. Las metavulcanitas constituyen bancos paralelos de 1 a 2 m de espesor, como los que se han observado inmediatamente al NE del paraje Santo Domingo. La roca tiene en general una composición dacítica, con ligera tenden-
La textura es blastoporfírica (relíctica de una textura primaria porfírica modificada por metamorfismo). Contiene entre 5 y 10% de fenocristales con tamaños entre 0,5 y 3,5 mm, que son principalmente de plagioclasa (oligoalbita-oligoclasa) y cuarzo; en menores proporciones se observaron feldespatos alcalinos y muscovita. La matriz es granoblástica a lepidogranoblástica, con granulometría fina (0,03 - 0,15 mm) y de igual composición que la de los fenocristales. Algunas veces la textura general tiende a ser esquistosa. En la zona de Cerros Largos, los citados autores hallaron una variedad litológica afírica, compuesta por un agregado de cuarzo microcristalino con plagioclasa (albita) subordinada, que esporádicamente forma tablillas y/o microlitas. Este agregado constituye el 95% del total de la roca, en tanto el resto está formado por sericita, biotita, apatita, turmalina, zircon y rutilo. También advirtieron cierta fluidalidad remarcada por la disposición de las micas y la tinción ferruginosa.

Las rocas de la Formación San Luis tienen bajos valores de susceptibilidad magnética, salvo en las proximidades de las fajas miloníticas (zona de cizalla del río Guzmán) donde poseen valores más altos (Sims et al., 1997). La unidad ha sido afectada por dos deformaciones compresionales. La primera deformación produjo un plegamiento apretado isoclinal, con desarrollo de un clivaje de plano axial. La segunda deformación dio lugar a zonas de cizalla separadas por dominios con plegamiento abierto y desarrollo de clivaje de crenulación, superpuesto a la primera deformación. Allí donde los planos axiales de los dos plegamientos son subparalelos, la transposición de las rocas de grano fino da lugar al desarrollo de pizarras. La pizarra es de color gris oscuro, constituida por delgadas láminas de filita entre las que se intercalan, en menor proporción, finas capas de cuarcita. El metamorfismo regional corresponde a la facies de esquistos verdes de grado bajo.

Relaciones estratigráficas

La unidad sobreyace discordantemente a las rocas de alto grado del Complejo Metamórfico Pringles (480 Ma) y no ha sido afectada por la deformación que soportaron estas últimas. A su vez, la formación es intruida por la Granodiorita Tamboreo (472 Ma), las tonalitas de la suite Bemberg (471 Ma) y una serie de diques aplíticos y riolíticos que cortan también a la Granodiorita Tamboreo. En las proximidades de los intrusivos ordovícicos, la faja filítica presenta fenómenos de metamorfismo térmico. Los contactos de esta formación con los complejos metamórficos Conlara y Pringles fueron intensamente cizallados durante el Devónico; en estas zonas se ha desarrollado cianita, estaurolita y granate y, localmente, venas de pegmatita con cuarzo-feldespatos-muscovita-cianita-estaurolita (Sims et al., 1997). La unidad es truncada al norte por el batolito de Las Chacras.

Edad y correlaciones

La Formación San Luis fue interpretada como una secuencia turbidítica (Prozzi, 1990), que se habría depositado durante una fase extensional del Ciclo Famatiniano (Sims et al., 1997). La edad de la Formación San Luis está controlada estructural y estratigráficamente. Las relaciones de yacencia descritas más arriba permiten asignar a la unidad una edad entre los 480 y 471 Ma, correspondiente al Ordovícico inferior.

Granitoides famatinianos (5)

Granitos, granodioritas y tonalitas.

En la sierra de San Luis se han reconocido varios plutones pertenecientes a un arco magmático relacionado con el Ciclo Orogénico Famatiniano. La intrusión de los granitoides ha sido interpretada como precinemática o sincinemática en relación a la fase orogénica principal del Ciclo Famatiniano (Llambías et al., 1991; Ortiz Suárez et al., 1992), considerando que el climax tecto-metamórfico aconteció entre los 460 y 480 Ma (Sims et al., 1998). En la sierra de San Luis, los granitoides de edad ordovícica tienen una susceptibilidad magnética que no supera 25 x 10⁻⁵ SI.

Granitoides El Realito

Antecedentes

Los Granitoides El Realito fueron cartografiados como una misma unidad ignea conjuntamente con otros granitoides del área (Pastore y González, 1954; González, 1957). Por su composición, metamorfismo y deformación, el plutón fue correlacionado con otros cuerpos ubicados más al sur, fuera de la hoja, que se identificaron como granitoides preorogénicos emplazados dentro del Complejo Metamórfico Nogoli. El plutón El Realito forma parte del grupo de tonalitas y granodioritas que constituyen los plutones Bemberg, Las Verbenas, El Tamboreo, Gasparillo y San Miguel (Zardini, 1966; Hack et al., 1990).
Distribución areal
El intrusivo forma el denominado cordón El Realito ubicado en el extremo noroeste de la sierra de San Luis, extendiéndose aproximadamente 26 km desde las inmediaciones de la ciudad de Luján hasta unos kilómetros al sur del río La Majada. Toma su nombre del cerro Realito (1.640 m snm). El cordón tiene una marcada asimetría topográfica, con fuertes pendientes al occidente y flancos orientales suaves.

Litología y estructura
La unidad está compuesta por monzogranitos, granodioritas, tonalitas y escasas dioritas/ gabros, conformando un extenso afloramiento elongado en dirección NNE (Brogioni et al., 1994, 2005). Los granitos se encuentran en la zona central formando la cresta del cordón, mientras que las tonalitas se ubican en los bordes (figura 13), gradiando a granodioritas hacia el oeste y a dioritas/ gabros hacia el este. El intrusivo presenta xenolitos de filitas y esquistos. En la zona centro-norte se observan dúques de granitos emplazados en las tonalitas. Las rocas de composición diorítica son escasas y se localizan preferentemente en las adyacencias del contacto con las metamorfitas. El contacto oriental ha sido afectado por cizallamiento y las rocas están milonitzadas en grado variable.

Las tonalitas se destacan por su coloración oscura y la abundancia de enclaves máficos. Son rocas de grano fino a medio, equigranulares a seriadas. Están compuestas por plagioclasa (15-41, 1% oligoclasa-andesina, microclino (<16%) y cuarzo (10, 3-50, 8%); junto a biotita, epidoto y rara muscovita; en las zonas de borde se observa hornblenda (19, 1-28, 3%). Los minerales accesorios más frecuentes son titanita, apatita, allanita metamórfica y hemaita. Suelen presentar una foliación definida por la orientación de biotita y lentes de cuarzo. Las tonalitas tienen 56, 75-66, 01% de sílice.

Los monzogranitos son rocas equigranulares a seriadas de grano medio. Tienen plagioclasa (20, 8-42%) del tipo oligoclasa zonada y maclada, microclino perítico (21, 5-34%), cuarzo (27,5-38%) generalmente poligonal, biotita (1, 5%), muscovita (0, 5-17, 1%) y granato. Los minerales accesorios son minerales opacos, apatita y raramente epidoto. La sílice alcanza entre 70, 68 y 74, 96% y químicamente se clasifican como granitos alcalifeldespáticos y sienogranitos.

El plutón está afectado por la misma foliación penetrativa que la roca de caja y parcialmente por fajas de cizalla dúctil dando lugar a una foliación milonítica.

Relaciones estratigráficas
El plutón El Realito habría intruido las metamorfitas previamente deformadas del Complejo Metamórfico Nogolí (Llambías et al., 1996) y a las metasedimentitas aún sin deformar de la Formación San Luis (Sato et al. 1996; von Gosen, 1998a). Las formas primarias de los plutones y sus aureolas de contacto fueron modificadas por deformación y metamorfismo (fácies esquistos verdes a anfibolita), e internamente presentan una foliación heterogénea. En parte se hallan afectados por fajas de cizalla dúctil.

Edad y correlaciones
Los Granitoides El Realito son equiparables, dada su composición, metamorfismo y deformación, a las rocas de los plutones Bemberg, Las Verbenas, El Tambureo, Gasparillo y San Miguel (Zardini, 1966; Hack et al., 1991; Brogioni et al., 1994; Sánchez et al., 1996; Llambías et al., 1996; González y Llambías, 1998; Sato, 1993; Sato y Llambías, 1994; Sato et al., 1996).
Dataciones sobre los cuerpos de El Tamboreo y Bemberg arrojaron edades de cristalización de 470±5Ma y 468±6Ma (U-Pb SHRIMP, Sims et al., 1998; Stuart-Smith et al., 1999). Sin embargo, un pico secundario de 496±8Ma en los datos SHRIMP de Bemberg puede ser interpretado como una edad de cristalización alternativa, asociada a pérdida de Pb (Stuart-Smith et al., 1999); quienes relacionaron la pérdida de Pb ocurrida hacia los 468 Ma (Stuart Smith et al., 1999) con el evento metamórfico que afectó los intrusivos.

Los monzogranitos de El Realito son también equiparables a otros cuerpos conocidos como Río Claro, Pantanos Negros, La Escalerilla, Río Quinto, ubicados más al Sur fuera de la Hoja (Carugno Durán et al., 1992; Carugno Durán, 1998 a; Brogioni et al., 1994; Sato et al., 1996; Ortiz Suárez 1999; von Gosen, 1998 a, 1998 b; von Gosen et al., 2002). Edades U/Pb en circones para los plutones La Escalerilla y Río Claro, dieron 507±24Ma y 490±15Ma, respectivamente (von Gosen et al., 2002), y 477+5 Ma para Pantanos Negros (Sato et al., 2003). La edad U-Pb SHRIMP en circonc de 484 ± 7 Ma obtenida para un pequeño intrusivo granítico con granate, metamorfizado y alojado en el Complejo Metamórfico Pringles, en estrecha relación espacial con los intrusivos máficos y ultramáficos, es considerada también como edad de cristalización (Sims et al., 1998).

Tonalita Quines

Antecedentes
La Tonalita Quines fue estudiada por Erroz (2006) y Erroz y Ortiz Suárez (2008), autores que vincularon el intrusivo con los cuerpos precinemáticos de la sierra de San Luis; también la asociaron con la serie diorita-tonalita-granodiorita de Brogioni et al. (2005) y con la suite de granitos y granodioritas ordovícicas de López de Luchi et al. (2007).

Distribución areal
La Tonalita Quines se halla en el NO de la sierra de San Luis, próxima a la ciudad de Quines. Forma un cuerpo de unos 15 km², con el eje mayor orientado con rumbo NE, paralelo a la foliación principal del basamento metamórfico. El extremo norte está intruido por el Granito La Población.

Litología y estructura
La unidad está constituida por una roca de composición tonalítica de aspecto macizo y foliado, que presenta abundantes enclaves oscuros de tamaños decimétricos, orientados y elongados (figura 14). La foliación está definida por la orientación de las biotitas y los enclaves. Los planos de foliación son paralelos a los bordes del cuerpo, con direcciones de buzamiento entre 290° - 270° y alto ángulo. En la zona central la tonalita tiene un aspecto macizo y, gradacionalmente, se hace más foliada hacia los bordes.

El contacto con la caja metamórfica es neto y no se han observado fenómenos de metamorfismo témico. Al norte de El Zapallar se reconocieron pequeñas apófisis tabulares de estas rocas cortando los gneises (Erroz y Ortiz Suárez (2008).

La roca tiene color gris oscuro a claro y una textura equigranular de grano medio a fino. Está compuesta por cuarzo, plagioclasa, biotita y hornblenda como minerales esenciales; muscovita, feldespato potásico, epidoto, circón y apatita como accesorios y sericita como secundario.

Los enclaves tienen una composición cuarzo-diorítica, con una textura de granulometría fina, formados principalmente por plagioclasa, biotita y cuarzo; epidoto, apatita, turmalina y circón son accesorios. Están elongados paralelamente a la foliación de la tonalita y pueden tener o no bordes de reacción. También se han encontrado enclaves ultramáficos compuestos principalmente por anfibol, plagioclasa y biotita. Los xenolitos metamórficos tienen tamaños de decenas a cientos de metros y están compuestos principalmente por esquistos y metacuarcitas, con desarrollo de porfiroblastos de muscovita.

Relaciones estratigráficas
La Tonalita Quines intruye el Complejo Metamórfico Pringles. Venas cuarzo feldespáticas, posiblemente relacionadas con los intrusivos devónicos, atraviesan la tonalita y sus enclaves en varias direcciones.

Edad y correlaciones
A la fecha no se han realizado dataciones de este intrusivo. Las relaciones de yacencia junto con las características litológicas y estructurales observadas en el afloramiento, similares a los granitoides pre a sincinemáticos descritos en la sierra de San Luis, permiten asignarle una probable edad ordovícica inferior.

Granito El Peñón
Antecedentes

Distribución areal
El Granito El Peñón está ubicado a unos 7 km al oeste de Concarán y es atravesado en su parte media por la ruta que va a Libertador General San Martín. Posee una forma alargada en sentido N-S y sus dimensiones son 16 km de largo por 5,5 km de ancho, cubriendo una superficie de aproximadamente 85 km².

Litología y estructura
Llaneza y Ortiz Suárez (2000) diferenciaron una facies de monzogranito muscovítico de grano grueso y otra de sienogranito leucocrático de grano fino que forma pequeños afloramientos sobre el borde este del intrusivo. Se han reconocido también diferenciados pegmatíticos irregulares de varios metros de ancho.

El cuerpo se dispone armónicamente con la estructura del Complejo Metamórfico Conlara, pero localmente los contactos son discordantes con los esquistos que hacen de caja. En el afloramiento se puede observar que la roca presenta una foliación bien desarrollada debido a la orientación de cristales de feldespato, agregados de cuarzo y cristales de muscovita (figura 15); paralela a la foliación regional de rumbo NNE de los gneises del Complejo Conlara. Xenolitos de metamorfitas de la caja son comunes en el interior del cuerpo.

El monzogranito es una roca de color gris de grano grueso, compuesta por cuarzo, microclino, plagioclasa y muscovita, con minerales accesorios como turmalina, apatita y circón. Las microestructuras observadas por Steenken et al. (2005) documentan una continuidad entre el estado magmático y el estado sólido de alta temperatura, indicando un emplazamiento sincinemático del plutón en tiempos de la deformación principal de los gneises y esquistos del Complejo Conlara.

Edad y correlaciones
Una datación U/Pb SHRIMP sobre circones del Granito El Peñón, dio una edad de 497 ±8 Ma (Steenken et al., 2005). Sin embargo, las relaciones de yacencia junto con las características litológicas y estructurales observadas en el afloramiento, similares a los granitoides pre a sincinemáticos descritos en la sierra de San Luis, sugieren una edad ordovícica inferior.

Tonalitas Rodeo Viejo

Se compone de cuerpos aislados de composición principalmente tonalítica ubicados en los alrededores de Rodeo Viejo, a unos 8 km al oeste de Bajo de Véliz, que intruyen concordantemente al Complejo Metamórfico Conlara. Sus dimensiones varían entre 4 y 32 km², los más conocidos son los plutones de Rodeo Viejo, El Salado y Las Cienaguitas.
Los contactos con las cajas metamórficas son netos, concordantes y en parte interdigitados. En los bordes se observa disminución del tamaño de grano y fenómenos de metamorfismo de contacto. Los intrusivos contienen xenolitos de metamorfitas, presentan frecuentes diaclasas y son atravesados por dikes de pegmatitas, aplitas, lamprófidos - basaltos y venas hidro-termales.

Los cuerpos tienen una composición predominantemente tonalítica y en menor medida diorítica. Las rocas tienen coloraciones entre gris blanquecino a gris rosado, presentan una textura equigranular, de granulometría fina a gruesa, con desarrollo de cristales de mica de mayor tamaño. Presentan una foliación débil, coincidente con la de los esquistos de la caja, dada principalmente por la orientación de biotita. La composición mineral es cuarzo, plagioclasa, microclino, biotita y muscovita, junto a circón, apatita, granate y fibrolita como accesorios. La susceptibilidad magnética de la roca medida in situ es alta, con valores entre 3000 y 4000 SI x10^{-5} SI.

Microscópicamente poseen textura granular allotriomorfa y están compuestas por plagioclasa, cuarzo, anfibol y biotita como minerales esenciales. En menor cantidad se observa muscovita, titánita y apatita, y ocasionalmente turmalina y granate, epidoto, zoisita, clinozoisita, clorita y sericita, como así también minerales de alteración.

Las dioritas tienen coloración gris verdosa a casi negra, son equigranulares, de granulometría media, pero cuando el anfibol tiene buen desarrollo su textura es porfírica con pasta de grano medio. Al microscopio presentan textura granada allotriomorfa y están formadas por plagioclasa, anfibol, cuarzo y biotita, y los minerales accesorios son apatito y escasos cir-cón.

En el camino que va desde Santa Rosa de Conlara hacia Lañinur, a la altura de la estancia El Sueño del Nono (65°13'20"O, 32°15'49"S), afloran unos cuerpos de composición tonalítica-diorítica de color gris verdoso, equigranulares de granulometría media, compuestos por cuarzo, plagioclasa, biotita y hornblenda, con clorita y hematita como minerales de alteración. La roca está foliada y tiene xenolitos de las cajas esquistosas. La susceptibilidad magnética es alta, entre 500 y 1500 SI x10^{-5}. Más al norte, en las proximidades de Punta del Agua (65°14'28"O, 32°11'31"S), el camino corta un cuerpo de composición diorítica, color verde claro, equigranular de granulometría fina, débilmente foliado (65/80), que está atravesado por venas de cuarzo hidrotermal con sulfuros (orientadas preferentemente 335/30 y 40/60).

La composición modal (Llambías et al., 1996), ha permitido clasificarlos como granodioritas con diferenciados hacia monzogranitos y tonalitas. La mayoría de las rocas tiene muscovita y granate, lo que indicaría un carácter peraluminoso, si bien análisis químicos de elementos mayoritarios y traza los agrupan como rocas metaluminosas a peraluminosas.

Otros cuerpos

Dentro de los complejos metamórficos se han observado otros intrusivos de variada composición, que por su yacencia y foliación interna han sido incluidos en este grupo de plutones famatinianos. Constituyen cuerpos relativamente pequeños y alargados, dispuestos armónicamente con la estructura regional, plegados y comúnmente acompañados de filones pegmatíticos.

Al sur del Granito El Peñón, entre La Cocha y San Pablo, afloran varios cuerpos orientados con rumbo NNE y dispuestos a lo largo de unos 4 km, con anchos que no superan los 80 m, que han sido descritos por López de Luchi (1987) como granitoides La Tapera. Los contactos con la caja son concordantes y netos; presentan un borde tonalítico, una zona interna monzogranítica a sienogranítica y
diferenciados aplo-pegmatíticos. Observaciones en el corte del camino entre Villa Praga y Tilisarao (65°23'30"O, 32°37'24"S) muestran una roca de textura equigranular de grano medio, color gris claro, con foliación débil 105/40 y susceptibilidad magnética muy baja. La composición es plagioclase (andesina-oligoclasa), microclino, biotita, muscovita, apatita y granate. Las variedades petrográficas son tonalitas, granodioritas, monzogranitos, leuco granodiorita y leucogranito. La composición química indica que son rocas metaluminosas a peraluminosas con más del 1% de corindón normativo, tratándose de un granito tipo S orogénico, intruido en una etapa cercana al pico del evento orogénico (López de Luchi, 1987). Una edad Rb/Sr determinada a través de una isócrona dio 485± 30 Ma (López de Luchi, 1987).

Otros que se disponen en una faja de rumbo NNE que va desde las cercanías de Loma Alta, bordeando el batolito de las Chacras hasta Quines en el norte, han sido agrupados como granitoides sincinemáticos (Llambías et al., 1991; Ortiz Suárez et al., 1992). Algunos cuerpos han recibido denominaciones como Cerro Pelado y Cruz de Caña (Llambías et al., 1996) o Granitoides Potrero de Gutiérrez (Ortiz Suárez et al., 2009). En la zona del dique de Luján, los granitoides están afectados por la cizalla La Arenilla (figura 16).

Al este de Villa Praga, en el camino que va hacia Guanaco Pampa, aflora un cuerpo alargado de composición granodiorítica-tonalítica que cubre un área de unos 13 km². La roca es de color gris, textura equigranular de granulometría media, formada por cuarzo, plagioclasa y biotita, con blastesis de muscovita sobreimpuesta a la fábrica primaria. Algunos cristales de feldespato de mayor tamaño forman «ojos» paralelos a la foliación interna de la roca (60/30). Esta foliación coincide con la orientación de los planos axiales de grandes pliegues marcados por los filones granítico-pegmatíticos dentro del complejo metamórfico. La roca presenta xenolitos de los esquistos de la caja. Los contactos del cuerpo son subconcordantes con las cajas y hacia el oeste el contacto es por falla.

En la zona de Las Cañas un pequeño intrusivo de forma lenticular, de 2000 m de largo por 800 m de ancho, está dispuesto concordantemente con la estructura de las metamorfitas. El cuerpo ha sido estudiado por Ortiz Suárez et al. (2012), quienes observaron que está formado predominantemente por gabros y una facies tonalítica restringida a la zona de borde; en el centro contiene pequeños cuerpos de rocas ultramáficas. La petrografía está representada por tonalitas con biotita y plagioclase, gabros con anfibol y hornblendas piroxénicas parcialmente serpentinizadas.

Los granitos que afloran en la zona de Paso Grande (65°39’53"O, 32°50’27’’S) forman cuerpos de hasta 3 km², más o menos alargados y que parecen ocupar las zonas de charnelas de los grandes pliegues que afectan el complejo metamórfico. Las rocas son de color rosado, equigranulares de grano medio (3- 4mm), formadas por cuarzo, feldespato, poca biotita y granate (<1mm). En la zona, filones de composición similar se intercalan entre los esquistos.

Granitoides de la sierra de Comechingones

En la sierra de Comechingones afloran pequeños cuerpos graníticos orientados siguiendo la foliación y el plegamiento regional del basamento metamórfico.

El intrusivo conocido como Granito Cañada de Álvarez se encuentra a unos 2 km al oeste de ese paraje y se accede al mismo por el camino que conduce al puente Videla sobre el río Quillinzo. El afloramiento ocupa una superficie de unos 4 km². El granito forma un cuerpo de contornos irregulares que se distingue por sus afloramientos redondeados; ha sido estudiado petrográficamente por Guereschi (1992) quién describe una roca equigranular de grano grueso y por sectores porfírica, que presenta coloraciones blanco grisáceas a gris rosado. Está compuesta por cuarzo, plagioclase, fenocristales tabulares orientados de microclino y escasa biotita; con sillimanita, apatita, circon, monacita y turmalina como accesorios. Modalmente, su composición es monzogranítica a granodiorítica. En los bordes del cuerpo se presentan enclaves de gneis granatífero, de tamaños decimétricos y concentraciones nodulares de cuarzo lechoso. Presenta una foliación marcada por la orientación de fenocristales de microclino, hojas de biotita y blastesis de cuarzo, coincidente con la foliación de la caja.

Al sur del anterior, a unos 15 km al NO de Río de Los Sauces, aflora un pequeño cuerpo de forma elíptica y orientación E-NE. Sus dimensiones son 1700 x 850 metros y cubre un área de 1, 17 km². Se destaca en el paisaje por el marcado resalto de relieve, pendientes convexas y su coloración rojiza, por lo que se lo conoce como plutón Los Colorados. El intrusivo ha sido estudiado y clasificado como
Villa de Merlo

granito álcali-feldespático por Guereschi (1992) y como monzogranito por Demichelis et al. (1997); está constituido principalmente por un monzogranito color gris rosado a pardo rojizo, de grano medio a grueso; compuesto por abundante microclino, cuarzo, plagioclasa, muscovita y biotita; la zona central presenta biotita y sillimanita, mientras que hacia los bordes domina la muscovita y escaso granate, junto a minerales opacos. La roca tiene una foliación marcada por la orientación de la biotita y un diaclasisamiento de diseño ortogonal; presenta enclaves ricos en biotita y xenolitos de la caja de dimensiones variadas, dispuestos de acuerdo a la foliación. Los bordes del granito cortan la foliación de la caja con contactos netos; en la zona del contacto la metamorfita está muy plegada y cortada por díques provenientes del granito.

Al sur y oeste del cerro San Lorenzo, inmediatamente al norte de Río de Los Sauces, se observan afloramientos de granitoides de color claro que han sido descritos y estudiados por Guereschi (1992) y Murray y Fagiano (2010). El cuerpo mayor, conocido como Granito Los Cocos, posee una forma elongada 2,5 km y un ancho de 1 km. La roca es de color gris claro, tiene una textura equigranular de grano medio, y está compuesta principalmente por cuarzo, plagioclasa y biotita, con escaso feldespato potásico y granate, muscovita secundaria y sillimanita fibrolítica; por su composición se clasifica como granodiorita biotítica. La biotita está orientada formando bandas y schlieren paralelas a la foliación de los gneises, con rumbo general NO y a modo de secuencia homoclinal inclinan al NE. En los afloramientos cortados por la ruta provincial 23, a unos 2 km al Norte de Río de Los Sauces, se observa que el granito posee un clivaje de fractura 235/85 paralelo a planos axiales del plegamiento regional. El granito Los Cocos presenta xenolitos de esquistos de formas lenticulares que pueden alcanzar tamaños métricos; además, contiene abundantes venas y «ojos» de cuarzo. Se observan coronas de plagioclasa alrededor de granate, de muscovita alrededor de sillimanita y biotita alrededor de granate, que indicarían una retrogradación. En las bandas cizalladas se desarrolla sericita.

Pegmatitas (6)

Si bien hay varias generaciones de pegmatitas que intruyen los complejos metamórficos de San Luis y Córdoba -unas se generaron durante el pico metamórfico M1 de edad Cámbrica, entre los 530 y 515 Ma y están restringidas al Complejo Metamórfico Comechingones, y otras se emplazaron durante el pico metamórfico orдовíco M2. Los cuerpos pegmatíticos más voluminosos y de amplia distribución dentro de los complejos metamórficos Conlara y Pringles se habrían emplazado posteriormente al evento M2, alrededor de los 460 Ma, en estrecha vinculación con los granitos famatinianos.

Siguiendo a Sims et al. (1997), las pegmatitas constituidas por turmalina-apatita- granate+ berilo ocurren dentro de los esquistos y están asociadas con intrusiones de leucogranitos tipo S dentro de fajas de cizalla, que buzan al este con bajo ángulo y desplazamiento normal (en extensión) con una lineación mineral que inclina al SE. La fábrica milonítica está definida por la presencia de muscovita- biotita+ clorita, mientras que la lineación está localmente definida por turmalina. Muchos de estos cuerpos pegmatíticos están fuertemente plegados y desmembrados dentro de la fábrica milonítica. Pegmatitas de cuarzo- feldespato- muscovita- cianita- estaurolita se desarrollan localmente en las zonas cizalladas del contacto entre la Formación San Luis y los complejos Pringles y Conlara. Las pegmatitas asociadas con leucogranitos y granodioritas se vinculan con zonas de deformación extensional desarrolladas al final del ciclo tectónico Famatiniano, acompañadas de una retrogradación de las paragénesis de alto grado del Complejo Metamórfico Pringles con el desarrollo de muscovita y turmalina a expensas de sillimanita y biotita. En estas pegmatitas Linares (1959) obtuvo una edad U-Pb en uraninita de 460 Ma y representarían el colapso extensional del orógeno Famatiniano (Sims et al., 1998).

2.1.4. DEVÓNICO- CARBONÍFERO INFERIOR

Rocas miloníticas en zonas de cizalla (7)

Antecedentes

Las fajas de cizalla que atraviesan la hoja tienen rumbos N-S a NO y por lo general inclinan hacia el Este, predominando los movimientos inversos con vergencia al Oeste. Las zonas de cizalla ponen en contacto terrenos de diferentes profundidades y han contribuido a la exhumación de los complejos metamórficos y a un engrosamiento cortical. Entre los trabajos más importantes realizados sobre estas zonas de alta deformación, pueden citarse a Martino (1993), Sims et al. (1997), Fagiano et al. (1999), Gromet et al. (2001), Martino (2003), Whitmeyer y
Dentro de las zonas de cizalla es común observar lentes boudinadas de pegmatita con muscovita y pequeñas cantidades de biotita, granate o turmalina. Los cuerpos presentan una foliación milonítica penetrativa defiada por bandas de cuarzo poligonal recristalizado y láminas de muscovita deformada; también una lineación marcada por la elongación de cuarzo y mica.

Zona de cizalla Tres Árboles- Las Albahacas- Las Lajas

La faja de cizalla Tres Árboles (Gromet et al., 2001, Whitmeyer y Simpson, 2003) es una de las zonas de deformación más importantes de las Sierras Pampeanas. Limita el borde oeste de las sierras de Córdoba, separando dos terrenos metamórficos: el Complejo Comechingones cámbrico y el Complejo Conlara ordovícico. También ha sido denominada faja de deformación Guacha Corral (Martino, 1993, 2003), ya que la naciente de dicho río corta la cizalla en el borde este del batolito Cerro Áspero.

La cizalla se extiende a lo largo de 250 km y la mineralogía de las milonitas indica que se desarrolló a una profundidad cortical entre 8 y 22 kilómetros. El ancho expuesto de la zona es de 12 km al norte del batolito de Cerro Áspero, disminuyendo hacia el norte hasta 5 km, donde expone niveles corticales menos profundos. La sección más profunda (a la altura de Merlo) es una ancha zona de rocas miloníticas y ultramiloníticas en facies anfíbolita, con sólo pequeñas proporciones de protomilonita (figura 17 a y b). Afloramientos de la faja de cizalla también se han reconocido sobre el piedemonte occidental de la sierra de Comechingones, entre las fallas frágiles Comechingones y El Molino, en los alrededores de Luyaba y Merlo. Hacia el norte, las ultramilonitas muestran profundidades intermedias con crecimiento de clorita, correspondiendo a niveles más someros donde las rocas fueron deformadas en un régimen cercano a la transición dúctil-frágil, dando como producto milonitas, cataclasitas, bandas de cizalla y pseudotaquilitas (sección Los Túneles, fuera de la Hoja). Hacia el sur, la faja de cizalla rodea por el este al batolito Cerro Áspero y continúa luego con rumbo SSO donde se resuelve como estrechas fajas de 100 a 200 m de potencia intercaladas con gneises menos deformados (Fagiano et al., 1997). Una de estas zonas está bien expuesta en el balneario de Las Albahacas. Hacia el sur, pasando la estancia Los Chañares, la cizalla toma un rumbo hacia el SSE. Una zona de alta deformación de 2 km de ancho, rumbo NO e inclinación al Este, ha sido denominada metamorfitas Loma Blanca (Otămendi et al., 1996) y cizalla Las Lajas (Sims et al., 1997). En este sector se observa una melange de rocas metamórficas e intrusivas limitadas por fallas. Su continuación hacia Sampacho (hacia el SE, fuera de la Hoja) por debajo de la cubierta sedimentaria cenozoica, fue inferida mediante imágenes aeromagnéticas (Sims et al., 1997).

La Cizalla Tres Árboles tiene contactos graduales con el complejo y es común encontrar secuencias que gradan desde estromatitas deformadas a protomilonitas, milonitas y ultramilonitas. En ella se conservan grandes sectores donde la deformación ha sido menor y los cuerpos tabulares de anfíbolita se...
Las milonitas tienen una matriz color gris oscuro a negro y de grano fino, donde resaltan los porfirioclastos de minerales felsicos. De acuerdo con las condiciones de deformación, se desarrollaron de manera secuencial dos tipos de asociaciones en la matriz, una de alta temperatura compuesta por neobiotita, sillimanita acicular y fibrolita y otra de menor temperatura constituida por clorita, sericita y muscovita de grano fino. El cuarzo muestra recristalización en subgranos, cintas y poligonación. Los porfirioclastos son en su mayoría de plagioclasa y en menor proporción de feldespato potásico y cuarzo. Presentan en sus extremos sombras de presión simétricas y asimétricas rellenas de cuarzo y rodeadas por colas de filosilicatos (Fagiano et al., 2002). Las rocas dentro de la zona de cizalla tienen una foliación y lineación mineral con buzamientos de 30 a 50º al este. Los indicadores cinemáticos muestran movimientos inversos Este sobre Oeste. Estudios geobarométricos realizados sobre muestras de granate, biotita y sillimanita, pre a sin deformación, dieron temperaturas entre 540ºC y 590ºC, con presiones de aproximadamente 3–6 kbar (Whitmeyer y Simpson, 2003).

Zona de cizalla Río Guzmán

La cizalla Río Guzmán se extiende de Norte a Sur desde el batolito de Las Chacras hasta las proximidades de Saladillo (fuera de la Hoja). La zona tiene un ancho de alrededor de 1000 m y puede seguirse como un fuerte lineamiento en las imágenes aeromagnéticas (Sims et al., 1997). Dentro de la cizalla se observa una milonita finamente bandeada con alto buzamiento al este que separa el Complejo Metamórfico Conlara de las filitas de bajo grado de la Formación San Luis, aunque afecta principalmente la unidad filítica. La milonita está formada por una asociación cuarzo-clorita-sericita+magnetita con una lineación mineral de estiramiento subvertical. Al Este de la zona de cizalla, las rocas del Complejo Metamórfico Conlara contienen cristales relicticos de cianita, estaurolita y granate que sugieren que la cizalla podría haberse iniciado a altas presiones. Los indicadores cinemáticos del tipo S-C y las bandas de cizalla asimétricas están bien desarrollados e indican un movimiento del bloque Este sobre Oeste. El grado metamórfico y los indicadores cinemáticos muestran una similitud con la cizalla Las Lajas de la sierra de Comechingones (Sims et al., 1997).

Zona de cizalla La Arenilla

Esta faja de deformación ha sido descrita por von Gosen y Prozzi (1998). Tiene un desarrollo de más de 100 km de largo con rumbo NNE. Dentro de la hoja se extiende a lo largo de 47 km desde el cerro Negro hasta Quines, pasando por el embalse del río Luján y El Zapallar. Alcanza un ancho máximo de unos 4 kilómetros.

La cizalla La Arenilla constituye el contacto entre el Complejo Metamórfico Pringles y el plutón El Realito (figura 18). Cuerpos de rocas máficas y ultramáficas están contenidos en la faja de milonítica. Hacia el Sur, fuera de la hoja, la cizalla bordea el Granito La Escalerilla por el Este. La cizalla es subvertical o buza con alto ángulo hacia el Este y tiene una cinemática inversa, con una componente de rumbo sinestral.

Edad y correlaciones

Las dataciones realizadas sobre rocas de zonas de cizalla dúctil representan edades de neominerales que varían entre 414 y 351 Ma (Devónico-Carbonífero Inferior). En forma simultánea y también con posterioridad, se intruyeron granitoides de formas circulares, ricos en potasio, que sugieren estar
relacionados con una corteza engrosada y en transición a intrusivos anorogénicos (Sato et al., 2003). Las edades Ar-Ar en muscovita de la zona milonítica La Arenilla son de 366 ± 2 Ma en la parte central y de 375 ± 1 Ma para la parte sur de la sierra (Sims et al., 1997).

Dataciones K-Ar realizadas sobre las fajas miloníticas (Steenken et al., 2004) han permitido separar tres dominios: (1) edades K-Ar sobre muscovita de 359 Ma, consistentes con los resultados de Sims et al. (1998), para la cizalla Río Guzmán, (2) edades K-Ar sobre biotita por debajo de los 335 Ma que han sido relacionadas con la historia de enfriamiento post-Achaliana y (3) edad K-Ar de 300 Ma, obtenida de las fracciones más finas de mica, que se relaciona con los últimos desplazamientos de las fajas miloníticas.

Dataciones Ar-Ar sobre sericitas provenientes de la fábrica milonítica de la cizalla Río Guzmán, indican una edad de formación que varía entre los 360 y 350 Ma (Camacho e Ireland, 1997). Considerando que la cizalla es truncada por el batolito Las Chacras esta edad sería el límite inferior de la intrusión. Adicionalmente, la zona es intruida por numerosos diques no deformados de lamprófiro y ha sido reactivada por el fallamiento terciario.

Granitoides Achalianos (8)

Monzogranitos porfíricos y equigranulares, cuarzosienita porfírica, leucomonzagranitos y granodioritas.

Los Granitoides Achalianos fueron intruídos entre 393 ± 5 Ma (Granito Renca, Stuart-Smith et al., 1999) y 368 ± 2 Ma (granito de Achala, Dorais et al., 1997). Las edades Ar- Ar en muscovitas y/o sericitas originadas durante el cizallamiento permitieron acotar la deformación entre los 385 y los 355 Ma, con un máximo a los 370 Ma (Camacho, 1997). Esta simultaneidad de deformación y magmatismo en un período discreto llevó a Stuart-Smith et al. (1999) a proponer un nuevo ciclo tectónico y magmático, diferente y separado del Famatiniano, que denominaron Ciclo Orogénico Achaliano. La orogenia achaliana en las Sierras Pampeanas está caracterizada por la intrusión de un conjunto de batolitos y cuerpos menores, formados en el marco de una tectónica compresiva y engrosamiento.

Figura 19: Granitoides achalianos.

1- Batolito Las Chacras Piedras Coloradas, 2- Batolito de Renca, 3- Plutón El Hornito, 4- Plutón El Telarillo, 5- Plutón La Población, 6- Complejo magmático de Achala, 7- Complejo magmático Cerro Aspero, 8- Granito Los Alanices, 9- Granito Tilisarao, 10- Complejo magmático Achiras.
cortical, acompañada por la reactivación de cizallas que se habrían originado durante la tectónica famatiniana (Zarco, 2006; Pinotti et al., 2006).

Los granitoides achalianos (figura 19) son subcirculars a elípticos y muestran una relación discordante con las rocas metamórficas encajantes, con aureolas de metamorfismo de contacto de reducida extensión (Gordillo y Lencinas 1979; Sato et al., 2003). En algunos casos alcanzan dimensiones batolíticas como el caso de Achala, Cerro Áspero, Las Chacras y Renca. Suelen presentar facies poráfíricas con megacristales de microclino y una marcada zonalidad composicional hacia las facies marginales, como por ejemplo el Granito Renca.

Batolito Las Chacras

Antecedentes y distribución areal

La denominación deriva de la localidad de Las Chacras que se localiza en la parte central del batolito. Estudios de detalle han sido realizados por Brogioni (1987a, 1991).

El batolito Las Chacras se sitúa en la zona central de la sierra de San Luis (figura 19). Las rocas graníticas forman un relieve de suaves lomadas sobre un área de 500 km². Se puede acceder por la ruta provincial 40 (Renca, Potrerillos, Las Chacras, siguiendo por huella hasta El Chispeadero) y por la ruta provincial 41 (La Totora, Las Chacras, La Puerta).

Litología, estructura y relaciones estratigráficas

El batolito está formado por cuatro cuerpos aproximadamente circulares dispuestos con orientación NO (figura 20), denominados Potrerillos, Las Chacras, La Mesilla y Las Huertitas (Brogioni, 1993). La foliación magmática, orientación de enclaves, schlieren, septs de metamorfitas, fracturas, diques y cone sheets, indicarían un emplazamiento siguiendo una dirección regional SE (Brogioni, 1993). Los plutones se describen más adelante.

El batolito Las Chacras no está deformado e intruye las rocas de los complejos metamórficos Conlara y Pringles.

Plutón Potrerillos

El Plutón Potrerillos forma un cuerpo ovoide de unos 11 km de diámetro que ocupa una superficie aproximada de 7 km². El nombre deriva de la pequeña localidad de Potrerillos donde está situado el plutón.

Plutón Las Chacras

El plutón de Las Chacras es un cuerpo semicircular con un diámetro de 17 km, orientado en direc-
ción NO. Tiene una superficie aproximada de 280 km². Está constituido por cuarzosienitas porfíricas muy gruesas con abundantes megacrístales de microclino, anfibol y biotita (figura 22), acompañadas por escasos sienogranitos y monzogranitos. Brogioni (1993) diferenció una intrusión central donde predominan los granitos metaluminosos, con alto contenido de K₂O y una intrusión externa con granitos meta a débilmente peraluminosos. Acompañan al cuerpo diques pegmatíticos con turmalina, aplitas y microgranitos. El plutón contiene septos de la roca de caja metamórfica de varios kilómetros de longitud y una faja de aplitas (cone sheets) de composición monzogranítica. Geoquímica ha sido clasificado como granito alcalifeldespático, peraluminoso y con alto contenido de K₂O.

Plutón La Mesilla

El plutón La Mesilla tiene un diámetro de unos 12 km y abarca una superficie de unos 130 km². Está formado por una zona externa compuesta por sienogranitos biotíticos de grano grueso, con megacrístales de microclino y una zona interna constituida por granitos mioriolíticos equigranulares de grano fino, con escasos cristales de microclino (figura 23). Modalmente son monzogranitos y químicamente corresponden a sienogranitos, con escasos granitos alcalifeldespáticos y cuarzosienitas. Ambas zonas son potásicas. Hay numerosos diques circulares de aplitas y pegmatitas en el sector occidental del stock.

Plutón Las Huertitas

El cuerpo de Las Huertitas tiene un diámetro de 8 km y abarca una superficie de 37 km². Está constituido mayormente por monzogranitos biotíticos, rojizos a rojizo- anaranjados. Son rocas de textura equigranular de grano medio a fino, mioriolíticas, con escasa biotita y muscovita (figura 24). El sector centro-norte del plutón está afectado por procesos...
hidrotermales que transformaron los monzogranitos en fenitas y dieron lugar a la formación de depósitos de U-Th y tierras raras, como el yacimiento Rodeo de Los Molles (Lira y Ripley, 1992).

Las fenitas son granitos alcalifeldespáticos y sienogranitos hololeucocráticos con bajo contenido de sílice, potásicos y peraluminosos. Se caracterizan por contener fluorita, egirina-augita, carbonatos y opacos. Los granitos son cortados por diques de pegmatita, venas de cuarzo y por escasos diques aplíticos. Los fenómenos de alteración hidrotermal, producto de fluidos enriquecidos en álcalis, provocaron albitización y pertitización de la plagioclasa y el microclino primarios.

La fenita contiene mineralización de tierras raras que se relaciona con áreas de cuarzo sieníticas alcalifeldespáticas y de sieníticas alcalifeldespáticas modales dentro de la fenita, con minerales primarios como britholita y allanita asociados a apatita, egirina, augita, flogopita, cuarzo y fluorita (Lira et al., 1999).

Ambiente tectónico

Según Brogioni et al. (1989) y Brogioni (1991), las características mineralógicas y geoquímicas son propias de granitoides calcocalínicos potásicos; las bajas relaciones iniciales $^{87}\text{Sr}/^{86}\text{Sr}$ son indicativas de una evolución a partir de líquidos magmáticos derivados del mant- to superior- cortezas inferior, con grado variable de contaminación cortical; interpretando que el batolito de Las Chacras estaría relacionado a un arco volcanico maduro, cuya evolución se manifiesta por su tendencia en aumentar los elementos HFS (High Field Strength elements), especialmente Nb e Y y en disminuir Sr, Ba, Ti y P.

Edad y correlaciones

Según Brogioni (1993) la intrusión del batolito de Las Chacras se habría iniciado con el emplazamiento del plutón La Mesilla, ya que las rocas sieníticas de La Mesilla y los enclaves microgranulares de igual composición son invadidos por cristales de microclino que se presentan en abundancia dentro de los plutones Las Chacras y Potrerillos. Dataciones realizadas por la misma autora dieron edades de 408±25 Ma (Rb/Sr) para el stock La Mesilla, 336±17 Ma (K/Ar anfibol) y 320±16 Ma (K/Ar biotita) para Las Chacras y 335±17 Ma (K/Ar biotita) para el cuerpo de Potrerillos.

Batolito de Renca

Antecedentes

El batolito de Renca ha sido descrito detalladamente por López de Luchi (1987 y 1993). Datos petrológicos, magnetometría y radimetría aérea, junto con nuevas dataciones sobre el plutón, han sido aportados por Sims et al. (1997).

Distribución areal

El cuerpo se ubica al oeste de la localidad de Renca y su zona central está ocupada por el embalse de San Felipe. Está atravesado por las rutas provinciales 40 (Tilisarao, Renca, Potrerillos) y 25 (Renca, San Felipe). El batolito tiene forma elíptica (20 por 13 km), con el eje mayor orientado E-O, cubriendo un área de 225 km².

Litología y estructura

El intrusivo presenta una estructura concéntrica donde se diferencian dos unidades petrográficas principales (figura 25), fácilmente reconocibles por magnetometría y radimetría aéreas (Sims et al., 1997). Hacen de caja los esquistos del Complejo Metamórfico Conlara, rocas que sufrieron los efectos térmicos y las deformacionales locales generadas por la intrusión.

El anillo externo, con un ancho de entre 2 y 5 km, consiste en un granito- monzogranito porfírico de coloración gris rosado claro, formado por fenocristales de feldespato potásico de 5 a 10 cm de largo en una matriz de grano grueso constituida por feldespato potásico, cuarzo, biotita, hornblenda y muscovita; como accesorios hay titanita, apatita, magnetita, circon y allanita y como secundarios, clorita y epidoto. Una variedad de composición tonalítica, rica en cuarzo, tiene megacrístales de
microclino parcialmente pertítico en una matriz de composición granodiorítica a tonalítica con microclino anhedral e intersticial. La plagioclaza varía entre andesina media a oligoclaza cálcica. La roca presenta enclaves, diques y rocas porfiroïdes de composición variable entre monzodiorita, monzonita y sienita, todas ellas cuarzosas.

El núcleo corresponde a un leucomonzogranito biótito- muscovítico, de color gris claro a gris rogado claro, de grano medio a grueso, con desarrollo de megacristales de microclino en las facies más gruesas. Su composición es cuarzo, feldespato potásico, plagioclaza, muscovita (tardía), biotita (como único máfico), con apatita y circón como accesorios y clorita reemplazando la biotita.

Una fase de leucomonzogranito a sienogranito de grano fino a medio, de coloración rosada a rojiza intensa, aflora como masas irregulares elongadas con dirección NE en el núcleo, o forma enjambres de diques en el anillo magnético exterior. La roca presenta fenocristales de microclino (5 mm) en una matriz de microclino y plagioclaza sódica (An6 An8) con cuarzo intersticial.

Las susceptibilidades magnéticas varían desde 100 a 1000 x 10^{-5} SI para la fase de borde y menos de 10 x 10^{-5} para el núcleo. El examen microscópico de la unidad externa del plutón de Renca permitió establecer que el carácter ferromagnético se debe a la presencia de cristales de magnetita con martitización incipiente a lo largo de los planos {111}, usualmente asociada a titánita y biotita; también se observaron algunos granos de ilmenita con hematita exueltada. En la unidad interna se observó que el carácter paramagnético se debe a la alteración (martitización) casi total de la magnetita original a hematita (López de Luchi et al., 2002).

Geoquímicamente ambas facies son peraluminosas, con un ISA (índice de saturación en alúmina) mayor que uno.

Edad y correlaciones

Datos de geochronología U-Pb sobre circones dieron edades de cristalización de 393 ± 5 Ma (Camacho e Ireland, 1997); otras dataciones dieron edades K-Ar (Ms) 367±8 Ma para el núcleo y K-Ar (Bt) 346±8 Ma para la zona externa (Steenken et al., 2008), ubicando la intrusión entre el Devónico inferior a medio y el Carbonífero inferior.

Plutón El Hornito

Antecedentes y distribución areal

El plutón El Hornito ha sido estudiado por Ortiz Suárez et al. (1997), Grosso Cepparo (2007) y Grosso Cepparo et al. (2007). El plutón se localiza al noroeste de la sierra de San Luis, entre las localidades de San Martín y Quines; forma un cuerpo elipsoidal de 15 km por 6,5 km, aflorando en un área de aproximadamente 73 km².

Litología y estructura

El cuerpo está formado por una facies predominante porfirole con megacristales de feldespato potásico inmersos en una matriz de granulometría media de color gris, con abundantes enclaves microgranulares máficos de dimensiones decimétricas (figura 26a). Los bordes del cuerpo están formados por una facies de granito equigranular de grano fino y color rosado. Los contactos son netos y parcialmente discordantes con las rocas de caja, ya que la foliación de las metamorfitas se acomoda en forma paralela a los márgenes.

Ortiz Suárez et al. (1997) reconocieron cuatro unidades petrográficas principales: 1) porfírica, 2) externa; 3) granítica roja y 4) enclaves dioríticos y rocas híbridas. La facies porfírica es la litología dominante, de composición monzogranítica a granodiorítica de color rosado a gris, textura porfírica a seriada, con fenocristales de feldespato potásico de hasta 10 cm de longitud en una matriz compues-
ta por cuarzo, plagioclase y biotita, con epidoto (zoicita) como accesorio; contiene abundantes miarolas, en ocasiones rellenas por cuarzo, feldespato potásico y turmalina; está atravesada por díques aplíticos y micrograníticos, venas de cuarzo y díques de lamprófiros. La facies externa es equigranular y se encuentra en diferentes afloramientos ubicados en los bordes del intrusivo, presentando un contacto neto y discordante con las metamorfitas y el granito porfírico; la roca tiene un tono rosado y una granulometría media a levemente porfírica en la zona más próxima al borde con las metamorfitas; está formada por microclino, cuarzo, plagioclase, escasa muscovita y comúnmente se observan cristales de pirita de un centímetro dispersos en la roca. La facies de granito rojo está vinculada con las metamorfitas y el granito porfírico; la roca tiene un tono rosado y una granulometría media a levemente porfírica en la zona más próxima al borde con las metamorfitas; está formada por microclino, cuarzo, plagioclase, escasa muscovita y comúnmente se observan cristales de pirita de un centímetro dispersos en la roca. La facies de granito rojo está vinculada con las metamorfitas y el granito porfírico; la roca tiene un tono rosado y una granulometría media a levemente porfírica en la zona más próxima al borde con las metamorfitas; está formada por microclino, cuarzo, plagioclase, escasa muscovita y comúnmente se observan cristales de pirita de un centímetro dispersos en la roca. La facies de granito rojo está vinculada con las metamorfitas y el granito porfírico; la roca tiene un tono rosado y una granulometría media a levemente porfírica en la zona más próxima al borde con las metamorfitas; está formada por microclino, cuarzo, plagioclase, escasa muscovita y comúnmente se observan cristales de pirita de un centímetro dispersos en la roca. La facies de granito rojo está vinculada con las metamorfitas y el granito porfírico; la roca tiene un tono rosado y una granulometría media a levemente porfírica en la zona más próxima al borde con las metamorfitas; está formada por microclino, cuarzo, plagioclase, escasa muscovita y comúnmente se observan cristales de pirita de un centímetro dispersos en la roca. La facies de granito rojo está vinculada con las metamorfitas y el granito porfírico; la roca tiene un tono rosado y una granulometría media a levemente porfírica en la zona más próxima al borde con las metamorfitas; está formada por microclino, cuarzo, plagioclase, escasa muscovita y comúnmente se observan cristales de pirita de un centímetro dispersos en la roca. La facies de granito rojo está vinculada con las metamorfitas y el granito porfírico; la roca tiene un tono rosado y una granulometría media a levemente porfírica en la zona más próxima al borde con las metamorfitas; está formada por microclino, cuarzo, plagioclase, escasa muscovita y comúnmente se observan cristales de pirita de un centímetro dispersos en la roca. La facies de granito rojo está vinculada con las metamorfitas y el granito porfírico; la roca tiene un tono rosado y una granulometría media a levemente porfírica en la zona más próxima al borde con las metamorfitas; está formada por microclino, cuarzo, plagioclase, escasa muscovita y comúnmente se observan cristales de pirita de un centímetro dispersos en la roca. La facies de granito rojo está vinculada con las metamorfitas y el granito porfírico; la roca tiene un tono rosado y una granulometría media a levemente porfírica en la zona más próxima al borde con las metamorfitas; está formada por microclino, cuarzo, plagioclase, escasa muscovita y comúnmente se observe

Plutón El Telarillo

El plutón El Telarillo está localizado en la sierra de San Luis, a unos 6 km al sur de Quines. Forma un cuerpo elipsoidal de 9 por 5 km con orientación NE y abarca una superficie de 37, 5 km². Está constituido por un granito equigranular de grano medio a grueso, color rosado, compuesto por cuarzo, feldespato y biotita (figura 26b). En sectores, la textura es seriada con fenocristales aislados de feldespato potásico de hasta 2 cm. Los valores de susceptibilidad magnética oscilan en 300 Six10⁻⁵. La facies de borde (quebrada del Zapallar) tiene una granulometría fina (<1mm) y está compuesta por cuarzo, feldespato, muscovita, granato y turmalina; la susceptibilidad magnética es muy baja. Los contactos oeste y este son subconcordantes con las milonitas.
de las cajas (dirección de buzamiento 295/60), más o menos coincidente con la foliación magmática interna, medida en la quebrada del Zapallar (300/50). Dentro del cuerpo se han observado filones pegmatíticos de hasta 30 cm de potencia (135/30). La roca está afectada por un diaclasamiento penetrativo de dirección 50/80 y 190/85.

Plutón La Población

El plutón La Población está ubicado al este de la ciudad de Quines. Su afloramiento tiene una forma semicircular de aproximadamente 2,5 km de ancho en sentido norte-sur y 6 km de largo en sentido este-oeste. El borde norte está afectado por el fallamiento de rumbo E-O que margina la sierra.

Ha sido descrito por Gómez Figueroa (2007) como un granito porfírico que presenta una zona de borde de granulometría más fina y ha generado diques anulares y radiales que intruyen las cajas; los contactos con la caja metamórfica son netos y produjeron metamorfismo de baja temperatura.

La roca es un granito porfírico-miarolítico, con megacrístales de feldespato potásico en una matriz de grano grueso con color gris, formado por cuarzo, microclino, plagioclase y biotita (figura 26c). El granito es magnético (susceptibilidades entre 300 y 1000 x10^-5 SI). Hacia el contacto se observa un monzogranito equigranular a ligeramente porfírico, color blanquecino. El cuerpo granítico presenta xenolitos de esquistos del Complejo Conlara y numerosos enclaves no orientados, oscuros de grano fino, de composición tonalítica, que alcanzan tamaños decimétricos y enclaves de composición sienítica menos numerosos y de mayor tamaño.

El intrusivo está acompañado por enjambres de diques internos y externos con respecto al intrusivo, de composición variable entre granodiorita, monzogranito y sienogranito, generalmente de grano fino o porfírico.

Granito Los Alanices

La unidad aflora al este de Los Alanices. Los contactos se encuentran parcialmente cubiertos por sedimentos modernos, lo que dificulta precisar sus límites.

El plutón Los Alanices está formado por granito de color gris claro, con variaciones a rosado, textura equigranular de granulometría media a fina; compuesto por abundante feldespato potásico, cuarzo, plagioclase, muscovita, escasa biotita y granate (figura 27).

Un estudio geoquímico realizado por Oropel y Ulacco (2003) indicó que el intrusivo Los Alanices tiene entre 72 y 75% de SiO₂, clasificándose como granito alcalifeldespático. Las muestras analizadas indican granitos peraluminosos, lo que ha sido corroborado por la presencia de muscovita y granate en su composición. En general el granito tiene escasa alteración, pero en la zona del puesto Los Alanices se encuentra fuertemente afectado por procesos hidrotermales asociados a los depósitos vetiformes de plomo, plata y zinc (Ulacco, 1992).

Dataciones K-Ar dieron edades de 330±16 Ma (Ulacco y Ramos, 2001) y 420+9 Ma (Steenken et al., 2004).

Granito Tilisarao

El granito forma un cuerpo de 25 km de largo y 5-10 km de ancho, expuesto en la sierra de Tilisarao. La magnetometría aérea muestra que el intrusivo consiste en un gran núcleo no magnético con un borde delgado moderadamente magnético.
(Sims et al., 1997). La roca es una granodiorita peraluminosa que contiene un 30% de cuarzo, 25% de plagioclasa, 20% de feldespato alcalino, 15% de biotita, 5% de hornblenda, 10% de clorita y 5% de titanita, allanita y granate. Como minerales accesorios aparece circón, apatita y magnetita, con clorita y epidoto secundarios. El granitoide tiene una textura seriada y una granulometría que varía entre 1 y 10 mm. Su firma geoquímica sugiere que está vinculado con los granitos devónicos (Sims et al., 1997).

Complejo Magmático Cerro Áspero

Antecedentes

Pinotti et al. (2002) sugirieron que la construcción del cuerpo batolítico se realizó mediante sucesivos pulsos de magma, comenzando con la intrusión del plutón Alpa Corral seguida por el emplazamiento sincrónico de dos intrusiones circulares coalescentes que formaron el plutón El Talita y luego el emplazamiento del plutón Los Cerros, siguiendo una trayectoria de sur a norte. Hacia el suroeste, en la base de la sierra de Comechingones, entre Papagayos y El Sauce, una prolongación del batolito ha sido denominada Granito Uspara por Sims et al. (1997), quienes lo interpretaron como una fase temprana.

Distribución areal

El batolito aflora en la sierra de Comechingones al oeste de las localidades de Río de Los Sauces y Alpa Corral. Tiene forma elipsoidal con orientación N-S, de 37 km de largo por 18 km de ancho y cubre una superficie aproximada de 440 km².

El cuerpo está formado por cuatro plutones (figura 28) denominados Uspara, El Talita, Alpa Corral y Los Cerros (Sims et al., 1997; Pinotti et al., 2002).

Litología y estructura

El Complejo granítico de Cerro Áspero constituye un batolito construido por la intrusión de sucesivos plutones circulares que tienen contactos netos entre ellos. La roca dominante es un monzogranito biotítico, color gris rosoado, equigranular de grano grueso, con fenocristales de microclino y de plagioclasa subordinada. Las unidades internas varían en composición desde monzogranítica biotítica hasta leucogranodiorítica.

Pinotti et al. (2006) observaron deformación y anisotropía magnética en la zona de contacto entre los plutones Alpa Corral y El Talita y concluyeron que serían una consecuencia de la superposición del plutón El Talita sobre el Alpa Corral, cuando éste último no estaba completamente cristalizado. Dataciones Rb-Sr indican que el proceso se desarrolló a los 369+ 9 Ma, en una etapa sinmagmática y no como resultado de un evento de deformación regional.

En cuanto al emplazamiento, Pinotti et al. (2002) propusieron una profundidad inferior a 7 km, mediante un mecanismo de asimilación y ascenso magmático con un importante control tectónico.

En las zonas de borde con las cajas metamórficas, próximas a los plutones El Talita y Alpa Corral, Esparza et al. (1997) reconocieron una aureola térmica de contacto con un espesor próximo a los 500 m, encontrando rocas en facies de hornfels hornblendífero (con sillimanita + biotita + cordierita + andalucita) y de albita – epidoto. Fagiano et al. (2006b) observaron que la metamorfita de la caja fue rotada dúctilmente por la intrusión y el calentamiento de los cuerpos ígneos. Las asociaciones minerales generadas durante el metamorfismo térmico indican temperaturas entre 500 y 600°C y presiones de aproximadamente 2 kilobares.

Cuerpos aplíticos y pegmatíticos simples constituidos por cuarzo y feldespato, con escasa muscovita y biotita, son vinculados genéticamente con este evento magmático.

Geoquimicamente, los granitos de Cerro Áspero pertenecen a la serie de rocas calcocalcalinas de alto potasio y tienen un elevado contenido de elementos litófilos, fósforo y titanio (Porta, 1992; Pinotti, 1998). En áreas restringidas, vinculadas a venas de cuarzo - wolframita - molibdenita y fluorita, la roca está alterada hidrotermalmente.

Plutón El Talita

El Talita es el plutón de mayor tamaño del batolito, con una superficie de unos 448 km². En él se han diferenciado tres unidades: central, externa y de techo (Pinotti et al., 2002). La unidad central
consiste en dos intrusiones circulares coalescentes constituidas por granito porfírico, biotítico, color rosado, con fenocristales de feldespato potásico de hasta 14 cm de largo; los minerales accesorios son titanita, allanita, apatita, circón y fluorita; el granito porfírico presenta abundantes enclaves máficos de grano fino que, junto con la orientación de los fenocristales, definen el flujo magmático; diques sinmagmáticos suelen cortar los enclaves y fenocristales de feldespato. La unidad externa forma un borde de unos 6-8 km de ancho, compuesta por un granito biotítico equigranular a seriado, color rosa pálido, con foliaciones muy marcadas por la elongación de los enclaves máficos, schlieren biotíticos y alineaciones minerales; la foliación es paralela al contacto entre las unidades graníticas pero es discordante con las foliaciones de la caja metamórfica. La unidad externa constituye el techo del plutón, aflora en sectores más elevados y en los bordes y está compuesta por leucogranitos seriados, de granulometría media a gruesa, con fenocristales de microclino, junto con biotita, circón y apatita; estos leucogranitos están afectados por procesos de greisenización, siendo los feldespatos reemplazados por muscovita y sericita.

Fracturas anulares y radiales afectan tanto al granito como a las cajas metamórficas; las fracturas anulares están ocupadas por enjambres de diques de microgranito que alcanzan potencias de 5 metros, particularmente en el contacto con el plutón El Talita.

Los estudios de anisotropía de susceptibilidad magnética (Pinotti et al., 2006) indicaron que la
unidad interna es ferromagnética, mientras que los granitos de techo son ferromagnéticos a paramagnéticos. La foliación magnética sigue un patrón subcircular paralelo a la intrusión del cuerpo El Talita, explicando el aplastamiento producido cuando el cuerpo Alpa Corral estaba aún en proceso de enfriamiento. El valor medio de susceptibilidad magnética para el granito Alpa Corral es 100 x 10⁻⁵ SI.

Plutón Los Cerros

Los Cerros es una pequeña intrusión (7 km²) ubicada en el extremo norte del batolito. Está constituida por un granito biotítico, porfírico a equigranular de grano grueso. Los fenocristales son de feldespato potásico con plagioclasa subordinada, formando cristales de hasta 3 centímetros. El plutón está afectado por greisenización, feldespatización potásica y albitización en menor medida; alteraciones genéticamente relacionadas con los enjambres de venas cuarzo-wolframíticas del distrito minero Cerro Áspero.

Plutón Uspara

El plutón Uspara es cuerpo alargado en el extremo SO del batolito que aflora discontinuamente a lo largo de 12 km en el pie occidental de la sierra de Comechingones. También se han observado asomos en la ruta provincial 1, en las proximidades del arroyo Uspara, que da el nombre al intrusivo (Sims et al., 1997).

La roca es un leucogranito de color rosa pálido a gris, equigranular a débilmente seriada, de granulometría media. La biotita y muscovita primarias son abundantes y el cuarzo anhedral suele formar fenocristales de hasta 1 centímetro. Son comunes las venas de pegmatita cuarzo-feldespato-turmalina-muscovita. En el pie de la sierra de Comechingones el granito está cortado por numerosas fallas buzzantes al este, que han brechado y alterado fuertemente la roca formando caolin, posiblemente illita y clorita. Yacimientos de caolinita se explotaron en varias canteras localizadas en el área. Hacia el tope del escarpe se infiere un contacto intrusivo, buzante al este, con el complejo metamórfico (Sims et al., 1997).

Complejo Magmático Achiras

Antecedentes y Distribución areal

El Complejo Ígneo Achiras definido por Sims et al. (1997), comprende el granito Los Nogales (Fagiano et al., 1993 y Nullo et al., 1992) y fue denominado Complejo Achiras por Otamendi et al. (1996).

Forma parte del extremo sur de la sierra de Comechingones. Anomalías aeromagnéticas indican que el complejo se extiende hacia el S y SE bajo sedimentos cenozoicos (Sims et al., 1997).

Litología y estructura

El Complejo Magmático Achiras está estratificado. La base está constituida principalmente por un granito seriado de grano grueso y magnético, que hacia arriba pasa a un leucogranito. Las dos unidades son gradacionales y representan un cambio en las proporciones de los tipos de rocas que los constituyen. La unidad inferior fue previamente mapeada como granito Los Nogales (Fagiano et al., 1993 y Nullo et al., 1992). Ambas facies están acompañadas por numerosos diques tardíos de pegmatitas (muscovita-granate-turmalina) y aplitas. Los granitos forman cuerpos tabulares cuyos contactos son mayormente concordantes pero intrusivos con respecto a las fábricas de las metamorfitas que los encierran.

La roca predominante es el granito seriado de grano grueso, color rosado, que aflora en el extremo sur (fuera de la hoja) que se caracteriza por su fuerte susceptibilidad magnética (500-1500 x 10⁻⁵ SI) y la presencia de cristales de microclino pertítico que alcanzan hasta 5 cm de largo. El granito contiene escasa hornblenda y accesorios como apatita, magnetita y pirita. La unidad aflorante en el área de trabajo es un granito - leucogranito biotítico, equigranular de grano grueso a medio, color rosado a gris. La fábrica bandeada por flujo se hace evi-
dente por la orientación de biotita, venas de pegmatita, schlieren y lentes de gneises pelíticos. La muscovita es el constituyente primario principal, pero también es abundante en zonas de cizalla, donde junto con cuarzo define una líneaación con buzamiento al ENE, contenida en los planos de foliación milonítica. Las fases accessorias están constituidas por circción, apatita y raramente granate.

En todo el complejo existe una interésratificación de gneises bandeados cuarzo-biotita-feldespato (+muscovita +granes) y esquistos cuarzo-biotita-muscovita (+ feldespato + sillimanita + granate).

Geoquímicamente ambas series son peraluminosas con un ISA de 1.1; sin embargo difieren de otros granitos devónicos en sus bajos contenidos en Rb, Y y U; además están menos oxidados.

Relaciones estratigráficas

Fagiano et al. (1993), Nullo et al. (1992) y Otamendi et al. (1996) interpretaron el complejo granítico como un producto de anatexis local, a 700°C y 3kb. El magma granítico derivado de una fuente metasedimentaria habría intruido las metamorfitas en niveles de corteza media a superior, como una serie de múltiples inyecciones durante la milonitización progresiva de la zona de cizalla Las Lajas (Sims et al., 1997).

Enjambres de pegmatitas turmaliníferas, asociadas espacialmente al Complejo Magmático Achiras, forman venas subconcordantes o diques discordantes, con direcciones NO y NNO principalmente, representando los productos finales del magmatismo en esta región.

Edad y correlaciones

Determinaciones U/Pb sobre circones del granito magnético dieron una edad de cristalización de 382+6 Ma que corresponde al Devónico medio a superior (Camacho e Ireland, 1977). Estas edades contrastan con las previas determinaciones realizadas por Nullo et al. (1992) y Fagiano et al. (1993) quienes interpretaron una edad ordovícica inferior para este granito.

Complejo Magmático de Achala

Antecedentes

Distribución areal

Por su extensión areal, es el intrusivo más importante de las sierras de Córdoba. El Complejo Magmático de Achala forma un batolito de unos 105 km de largo por unos 40 km de ancho, orientado con rumbo 15º. Se extiende desde Characato, en su extremo norte, hasta el cerro Los Linderos, en la zona de Yacanto de Calamuchita. La superficie aflorante, incluyendo la apófisis occidental en la zona de Mina Clavero, conocida como sierra de Achalita, es de unos 2.800 km² (figura 29). En la zona de trabajo aflora solamente su extremo austral, al que se puede acceder por el camino que une Yacanto de Calamuchita con el cerro Los Linderos, pasando por el puesto Tres Árboles.

El cuerpo conocido como Loma de la Población (Varas et al., 1997) de 1,5 km de largo por 1 km de ancho, localizado al sur de San Javier, en el borde occidental de la sierra de Comechingones, es integrado en el Complejo Magmático de Achala debido a sus similares características petrográficas y geoquímicas (figura 29).

Litología y estructura

El extremo sur del macizo, denominado «suite Champaquí» (Demange et al., 1996) o «sector Champaquí- La Cumbrecita» (Zarco, 2006), está caracterizado por granitos peraluminosos, a veces granatíferos, con alto contenido de Na₂O (5,35% en promedio). La roca es un granito equigranular medio, de dos micas, pobre en Th y U, que está intruido por granitos leucocráticos muscovíticos, a veces granatíferos. En profundidad la textura
equigranular pasa gradualmente a porfírica media, lo que ha sido comprobado en la quebrada del arroyo Tabaquillo. La escasez de pegmatitas en este lugar es notable en comparación con el resto del batolito de Achala, observándose pocos mantos de aplitas horizontales (Zarco, 2006). Grandes tabiques de rocas metamórficas se intercalan en los granitos equigranulares, conformando mantos subhorizontales de diferente tamaño inclinando hacia el sur.

Los granitoides del sector Champaquí tienen una tendencia composicional sódica que en algunos casos da lugar a leucogranitos muy diferenciados, con tenores de sodio que alcanzan 5-7% y relaciones K$_2$O/Na$_2$O < 1 (Bonalumi et al., 2001). Geoquimicamente la roca ha sido clasificada como calcoalcalina, peraluminosa, con alto contenido de K$_2$O, U y elementos traza incompatibles (Rapela, 1982).

El plutón Loma de La Población ha sido descrito como un leucomonzogranito equigranular, en parte porfírico, de dos micas, granatífero, color grisáceo o rosado. Valores modales realizados sobre 4 muestras dieron 32% de cuarzo, 32% de plagioclasa, 25% de microclino, 9% de muscovita y 1.4% de biotita (Varas et al., 1997). Según estos autores, los valores se asemejan a los de los granitos del Champaquí. Geoquimicamente corresponde a un granito débilmente peraluminoso, pobre en CaO, Fe$_2$O$_3$, TiO$_2$ y Zr. Dentro del plutón se han reconocido diques de pegmatitas litíferas, zonadas, con cuerpos de reemplazo compuestos por clevelandita asociada a lepidolita, microlita, topacio y apatita (Gay, 1990).

Edad y correlaciones

El batolito de Achala posee contactos netos y es regionalmente discordante. La roca de caja son gneises sobre los que se desarrolla una aureola discontinua de metamorfismo de contacto, con andalucita y cordierita, que ha sido documentada en varias áreas (Gordillo y Lencinas, 1979).

Las edades obtenidas para el batolito de Achala, de 368±2 Ma (U/Pb circon, Dorais et al., 1997) y 358+ 9 Ma (isocrona Rb/Sr en roca total, Rapela et al., 1991) indican que se habría emplazado en el Devónico superior-Carbonífero inferior.

Lamprófiros (9)

Tanto en las sierras de Córdoba como en las de San Luis, cuerpos de lamprófiro cuya composición varía entre minette, kersantita y spessartita, se presentan como diques subverticales asociados a fracturas. Suelen estar acompañados por vetas de cuarzo que en algunos casos son portadoras de scheelita y ocupan la misma estructura, aunque su emplazamiento sería previo a las vetas de cuarzo mineralizadas, mostrando en algunos sectores una alteración propilítica sobreimpuesta.

Los lamprófiros tienen una textura porfírica y están formados por biotita, plagioclase y cuarzo. La biotita es el principal componente máfico y suele estar reemplazada por epidoto, clorita y clinoanfiboles. Apatita y circon son los minerales accesorios. Titana, epidoto, calcita y cloritas son productos de alteración de los minerales primarios.

Los diques de lamprófiro cortan discordantemente la foliación metamórfica principal del basamento y ocupan un sistema de estructuras frágiles, rectilíneas y verticales, con direcciones ONO y NE, con desarrollo de zonas de brecha. Estas estructuras estarían vinculadas con las fases finales del Ciclo Achaliano, acaecido durante el Devónico. Una datación K-Ar sobre biotita de un lamprófiro ubicado en la zona de Las Aguadas (32°20’31”S, 65°28’16”O) dio una edad de 408 +6 Ma (Montenegro et al., 2010).
2.1.5. CARBONÍFERO SUPERIOR-PÉRMICO

GRUPO PAGANZO

Las sedimentitas del Paleozoico Superior aflorantes en la hoja corresponden a depósitos glacilacustres que rellenaron un paleovalle de origen tectónico. Las rocas pertenecen al Grupo Paganzo (Azcuy y Morelli, 1970). Los afloramientos están ubicados en la región noreste de la sierra de San Luis, en los parajes denominados Bajo de Véliz y Agua Dorada. Las sedimentitas del Bajo de Véliz son las que tienen mayor desarrollo areal e importancia bioestratigráfica.

Formación Bajo de Véliz (10)

Diamictitas, areniscas, limolitas y pelitas con fósiles

Antecedentes

Los primeros antecedentes sobre la presencia de sedimentitas fosilíferas en Bajo de Véliz corresponden a los trabajos de Ave Lallemant (1875) y Brackebusch (1876). Otras contribuciones pioneras fueron las de Bodenbender (1896), Kurtz (1895, 1921), Gerth (1914), Keidel (1922), Du Toit (1927), Gothan (1927), Fossa Mancini (1939, 1940, 1941 y 1943), Frenguelli (1946), Frenguelli et al. (1942) y Casas (1950).

Brackebusch (1876) les asignó a las sedimentitas portadoras de tafoflora una edad terciaria, mientras que Kurtz (1895) concluyó que la flora estudiada era triásica. Posteriormente modificó esa edad y determinó que eran comparables con las secciones inferiores de los estratos Karharbari y Talchir del Sistema de Gondwana (Kurtz 1895, 1921).

Al definir la Formación Bajo de Véliz, en la localidad homónima, Flores (1969) estableció un espesor de 187 m, con un miembro inferior de 117 m y uno superior de 70 metros. Posteriormente, Húnicken y Pensa (1972) propusieron un espesor de 164 m para toda la formación, a la que subdividieron en tres miembros que denominaron, de base a techo: Cautana, Pallero y Lomas. Más tarde, Almandoz (1993) definió un espesor de 127 m, separando tres unidades de la siguiente forma: Unidad I (92 m), Unidad II (25 m) y Unidad III (10 m), que fueron estudiadas en detalle por Di Paola et al. (1996).

Distribución areal

Las sedimentitas afloran como una serie de lomadas suaves al norte de la localidad de Bajo de Véliz, preservadas en una depresión con rumbo NS, de unos 7 km de largo por 1 km de ancho.

Más al oeste, Costa et al. (1995) mencionan que existen otros afloramientos que pueden corresponder a la misma unidad, en un pequeño valle conocido como Agua Dorada.

La coloración general de las sedimentitas es gris amarillento, excepto aquellas que por su importante contenido orgánico, tienen tonos gris oscuro a negro.

Litología y estructura

La columna estratigráfica comienza con la Unidad I (Almandoz, 1993), denominada Miembro Cautana por Húnicken y Pensa (1972), que aflora principalmente en el borde oriental de la depresión, en los sectores de La Escuela, puesto Pallero, La Cantera (al este del puesto Véliz) y en el arroyo Higuera Norte. De acuerdo con Almandoz (1993) y Di Paola et al. (1996), la sección inferior comienza...
con diamictitas depositadas en un ambiente fluviglaciar; sigue una sección media, formada por areniscas con abundantes ondulitas y areniscas macizas con concreciones calcáreas (marlekor) y culmina con la sección superior, constituida por areniscas con estructuras de corte y relleno, estratificación cruzada paralela y entrecruzada, de origen fluvial.

Sobre esta secuencia se superpone la Unidad 2 (Almandoz, 1993) o Miembro Pallero (Hünicken y Pensa, 1972) que aflora en los sectores centro y norte de la depresión, en La Cantera (al oeste del puesto Véliz), Lomas del Árbol y puesto Altamirano. Está compuesta por una alternancia de areniscas finas limosas y limolitas arcillosas con estratificación fina y laminación, de origen lacustre, con abundante materia orgánica carbonizada y restos de vegetales, insectos y escorpiones.

La sección superior o Miembro Lomas (Hünicken y Pensa, 1972) aflora en el borde oeste del Bajo de Véliz, al sur y norte del puesto Pallero, al este del puesto Palacios y en los alrededores del puesto Pollini (extremo norte de la depresión). Se caracteriza por un aumento en el tamaño de grano y espesor de los estratos, estos últimos constituidos por areniscas medianas a gruesas con estructura entrecruzada planar y en arista, y areniscas medianas a gruesas. En forma subordinada afloran areniscas finas y limolitas laminadas con ondulitas de corriente.

Bancos calcáreos estromatolíticos, denominados B1, B2 y B3 (Di Paola et al., 1996) están interestratificados con las limoarcilitas de las unidades I y II (figura 30).

Según Costa et al. (1995), los afloramientos de Agua Dorada (no representados en el mapa) tienen escasa expresión areal y potencia (17 m) y son estériles desde el punto de vista paleontológico. Debido a su cercanía y parecido litológico los correlacionaron con la Formación Bajo de Véliz. Las sedimentitas apoyan sobre el basamento metamórfico y están cubiertos por depósitos cuaternarios. Según estos autores, comienzan con un banco de 0,2 m de espesor de arenisca cuarzosa de grano mediano, color pardo amarillento, con escaso cemento calcáreo. Le siguen 2 m de areniscas arcósicas algo micáceas de grano mediano, color rosado pálido y escaso cemento calcáreo. Continúan 10 m de areniscas cuarzosas de grano mediano a fino con moderada selección, débilmente micáceas, color gris verdoso claro y escaso cemento calcáreo presentándose como bancos compactos de 0,2 a 0,5 m de espesor con intercalaciones de lentes de pelitas gris verdosas claras. Finaliza la secuencia con 2 m de areniscas tenaces, color amarillento, finamente moteadas por limolita, en bancos compactos que culminan con 0,5 m de areniscas friables, micáceas, con gran contenido de feldespato que le confieren un característico tono rosado.

Ambiente de depositación

En las primeras investigaciones estratigráficas se reconoció la presencia de sedimentos laminados semejantes a los varves, concreciones del tipo marlekor, fragmentos de rocas esparcidos muy aisladamente en el espesor de las pelitas y ondulaciones, así como deformaciones en la secuencia de limolitas laminadas. Estas evidencias llevaron a sostener el origen glacilacustre o limmo-glacial de las sedimentitas (Fossa Mancini, 1939, 1940 y 1943; Frenguelli, 1941; Frenguelli et al., 1942; Casas, 1950; Flores, 1969; Flores y Criado Roqué, 1972).

Hünicken y Pensa (1975) interpretaron que el paleoambiente deposicional del Miembro Cautana es de carácter aluvial con cortos periodos lacustres, mientras que el Miembro Pallero representaría un
largo periodo lacustre de reducida extensión areal, con una flora relativamente abundante desarrollada en un clima templado a cálido. El Miembro Lomas habría sido el resultado de una ligera reactivación tectónica del área, que produjo la depositación de psamitas en un ambiente fluvial. La evolución paleoambiental considerada por Hünicken y Pensa (1975) fue compartida por Almandoz (1993), quien además indicó que la seción media del Miembro Cautana, correspondería a un posible delta progradante en un medio lacustre marginal, donde los sedimentos de playa parecen estar retrabajados.

El paleoclima fue uno de los aspectos más discutidos y polémicos. La revisión de Cúneo (1984) sobre la ecología de la flora neopaleozoica en la Argentina, indica para tiempos contemporáneos a la Formación Bajo de Véliz, un desplazamiento de Sudamérica de zonas periglaciales a sectores más templados, con una disminución de la humedad. Este autor sostiene que «la vegetación migró y se concentró en sectores intramontanos de la parte oriental en forma de bolsones donde aún se mantenían condiciones húmedas». Otro dato de importancia en la determinación de las condiciones paleoclimáticas es la referida a la posición paleolatitudinal de Sudamérica, Rapalini (1990) señaló que para el Pérmino temprano (283 Ma) el sector en cuestión se habría ubicado a los 30° latitud por el material proveniente del Miembro Pallero (Archangelsky et al., 1971; Leguizamón, 1971, 1979; Hünicken, 1980; Cúneo, 1984; entre otros). A continuación se enumeran los fósiles registrados:

Microfloras fósiles: Leiotriletes directus Bal. y Henn., Granulatisporites cf. trisinus Bal. y Henn., Cyclogranisporites patelliformis Menénd., Verrucosisporites sp., Acanthotriites filiformis (Bal. y Henn.) Tiwari, Acanthotriites sp., Apiculatisporis cornutus (Bal. y Henn.) y Höeg. y Bose, Apiculatisporis sp., Neoraistrickia ramosa (Bal. y Henn.) Hart, Neoraistrickia sp., Cristatisporites longispinosus Menénd., Kraeuselisporites sanluensis Menénd., Kraeuselisporites sp., Thymospora leoparudos (Bal. y Henn.) Hart., Parasaccites rotatus (Bal. y Henn.) Bharad. y Tiw., Parasaccites mehtae (Lele), Parasaccites sp., Potonieisporites sp., Cordaitina sp., Florinites walikalensis Höeg. y

Contenido fosilífero
La posición cronoestratigráfica de la Formación Bajo de Véliz fue posible gracias a los estudios de tafoflora, palinología, entomofauna y artropofauna del material proveniente del Miembro Pallero (Archangelsky et al., 1971; Leguizamón, 1971, 1979; Hünicken, 1980; Cúneo, 1984; entre otros). A continuación se enumeran los fósiles registrados:

Microfloras fósiles: Leiotriletes directus Bal. y Henn., Granulatisporites cf. trisinus Bal. y Henn., Cyclogranisporites patelliformis Menénd., Verrucosisporites sp., Acanthotriites filiformis (Bal. y Henn.) Tiwari, Acanthotriites sp., Apiculatisporis cornutus (Bal. y Henn.) y Höeg. y Bose, Apiculatisporis sp., Neoraistrickia ramosa (Bal. y Henn.) Hart, Neoraistrickia sp., Cristatisporites longispinosus Menénd., Kraeuselisporites sanluensis Menénd., Kraeuselisporites sp., Thymospora leoparudos (Bal. y Henn.) Hart., Parasaccites rotatus (Bal. y Henn.) Bharad. y Tiw., Parasaccites mehtae (Lele), Parasaccites sp., Potonieisporites sp., Cordaitina sp., Florinites walikalensis Höeg. y

Artropofauna fósil: *Paranarkemina kurtzi* Pinto y Ornellas. *Philiasptilon hunickeni* Pinto y Ornellas.

La única especie perteneciente al género *Megarachne servinei*, es un eurypterido extinto del Carbonífero Superior (Hünicken, 1980). Originalmente fue descrito como una araña con un cuerpo de 339 mm, que podría haber sido el espécimen más grande de la historia. El fósil fue reexaminado por Selden *et al.* (2005) quienes determinaron que en realidad se trata de un euryptérido (escorpión) de la familia *Mycteroptidae* (figura 31).

Relaciones estratigráficas

La unidad apoya sobre el Complejo Metamórfico Conlara y está cubierta por depósitos cuaternarios.

Edad y correlaciones

La abundante información paleontológica contenida en las sedimentitas de Bajo de Véliz, ha permitido asignarles una edad comprendida entre el Carbonífero superior y el Pérmico inferior.

En la sierra de La Estanzuela, a orillas del arroyo del Carrizal y próximo a la localidad de El Tala (fuera de la Hoja), litologías similares fueron estudiadas y ubicadas en el Paleozoico superior por Radozta (1975) y correlacionadas con la Formación Bajo de Véliz (Magnou, 1975). Los afloramientos de la sierra de La Estanzuela fueron equiparados con las unidades aflorantes en Cerro Suco y Sampacho (al sur de la sierra de Comechingones, Córdoba), proponiéndose para todo el conjunto el nombre de Formación Ranqueles (Hünicken y Pensa, 1980).

Hünicken y Pensa (1975) también correlacionaron la Formación Bajo de Véliz con los afloramientos de Chancaní, Totora Huasi y Tasa Cuna (Córdoba) y con los de la sierra de Los Llanos (La Rioja). Para Salfity y Gorustovich (1983) la Formación Bajo de Véliz representa el borde oriental de la Cuenca Paganzo, interpretación aceptada en el trabajo de recopilación del Sistema Carbonífero de la República Argentina (Archangelsky *et al.*, 1987).

2.2. MESOZOICO

2.2.1. CRETÁCICO

Basaltos (11)

Antecedentes

Distribución areal
Pequeñas manifestaciones de rocas basálticas se hallan en el batolito Las Chacras formando cuerpos de base elipsoidal, mientras que diques basálticos han sido observados en la zona de Las Aguadas (sierra de San Luis) y en las proximidades de Las Albahacas y Los Chañares (sierra de Comechingones).

Litología y estructura
En la zona del batolito de las Chacras, pequeños cerros de basalto que no superan los 170 metros de diámetro, se observan como resaltos discretos sobre el relieve circundante (figura 32). No es clara la relación entre estos afloramientos y líneas de fracturación, pero parecen alinearse con estructuras de rumbo O-NO o con las estructuras circulares tipo cone sheets. En algunos de estos cerros se han abierto frentes de cantera donde se observa el diaclasado vertical hexagonal del basalto y un plano de fractura subhorizontal que corta la disyunción columnar. La roca es muy compacta, de color gris oscuro, textura porfírica y pasta afanítica muy fina, donde es posible observar pequeños cristales blanquecinos de plagioclasa y/o feldespato alcalino, cuarzo y pequeños cristales de olivino entre 1 y 40 mm. La roca está constituida por clinopiroxeno, olivino, plagioclasa, biotita, nefelina, melilita, analcima y magnetita, a lo que se agrega xenocríticos de plagioclasa, feldespato alcalino y cuarzo; fueron clasificadas como basanitas, basanitas nefelínicas con algo de melilita, nefelinitas olivínicas, basaltos olivínicos y rocas híbridas como producto de la contaminación con la roca de caja (López y Solá, 1981).

Los diques basálticos de Las Aguadas cortan el basamento metamórfico con rumbos N a NE; tienen hasta 2 m de potencia y alcanzan largos de alrededor de 1000 metros. La roca tiene una coloración marrón a rojiza oscura y presenta una textura porfírica donde se distinguen algunos fenocristales de plagioclasa y olivino; la plagioclasa es escasa y se presenta como cristales tabulares fuertemente corroídos, reemplazados por sericita, epidoto y clorita; el olivino está serpentinizado y contiene numerosas inclusiones de espinozo alterado; la pasta está constituida por biotita y plagioclasa, esta última formando cristales zonales alterados a zoicita/clinozoicita y calcita, con inclusiones de apatita, biotita y opacos; el escaso cuarzo se presenta como xenocríticos corroídos y rodeados por una corona de material clorítico.

En la sierra de Comechingones, Candiani y Maza (1982) observaron diques de basalto

Figura 32: Ubicación de basaltos en el Batolito de Las Chacras
subverticales que con rumbo NO cortan la foliación de los gneíses. Los diques tienen escasa potencia y afloran en cortos trechos. La roca de granulometría fina y de coloración verde oscuro está constituida por plagioclasa An 65, augita muy alterada y reemplazada por actinolita, apatita, olivino muy serpentinizado, biotita cloritizada y opacos (magnetita e ilmenita), con clorita, serpentina, actinolita, calcita, antigorita y crisotilo como secundarios. En base a esta mineralogía fue clasificada como traquibasalto (Bonalumi, 1981).

Edad y correlaciones
Los volcancitos y diques de basalto cortan las rocas de basamento metamórfico y los granitos devónico-carboníferos. Afloramientos similares a los cerritos basálticos de Las Chacras han sido observados más al oeste, fuera de la hoja, al oeste de la pampa de las Invernadas, en lugares conocidos como Cerrito Negro y La Lomita. También al sur de la sierra de Comechingones, en la región de Villa Mercedes y Chaján, sobresalen varios cerritos cónicos de basalto descriptos y datados por López y Solá (1981), con edades entre 66 y 85 Ma (K–Ar roca total). Otras dataciones K–Ar en flogopita dieron una edad de 67.5±2.7 Ma (Lucassen et al., 2002), indicando que estos conitos volcánicos se habrían formado en el Cretácico superior.

2.3. CENOZOICO
2.3.1. NEÓGENO
2.3.1.1. Mioceno- Plioceno
Formación Paso de Las Carretas y Formación Río Quinto (12)
Sedimentitas fluviales rojizas, areniscas gruesas, conglomerados, margas y calcretas. Limolitas arcillosas.

Antecedentes
En las cabeceras del río Quinto, en la localidad de Paso de las Carretas, se han descrito con cierto detalle afloramientos de rocas asignadas al Neógeno. Rossi (1966b) identificó remanentes aluvionales arenosos al norte de la localidad de Villa del Carmen, río Papagayos y arroyo del Tala, que equiparó con las «fácies calchaquíes del Plioceno». Pascual (1954) estudió una sucesión de areniscas arcillosas calcáreas expuestas en la localidad de El Retamo (al noroeste de Quines) y definió la especie Chasicotherium rothi, incluyéndola dentro del Chasicoense (Mioceno superior). En la cuenca de San Luis, las formaciones San Roque y Mulitas fueron correlacionadas con la Formación Los Llanos (Pastore y Ruiz Huidobro 1952, Flores y Criado Roque 1972). Sobre la base de una revisión paleontológica del mismo material estudiado por Pascual (1954), Guiñazú (1962) reubicó a la Formación Los Llanos en el Mioceno. Posteriormente, Methol (1971) mencionó la presencia de sedimentitas homologables con los Estratos de los Llanos aflorantes en el suroeste de Santa Rosa del Conlara.

Miró y Santa Cruz (1973) cartografiaron además afloramientos en Barranca Colorada (al norte de Merlo), La Paz, Luyaba, valle del río Conlara, San Pablo, entre Concarán y Santa Rosa y al norte de esta última localidad, denominándolos Formación Papagayos y asignándoles una edad terciaria superior. Santa Cruz (1979) denominó Formación Río Quinto a las sedimentitas aflorantes en el borde oriental de la sierra de San Luis y describió afloramientos atravesados por el río Conlara, al N-NO de La Toma, Renca y San Pablo, relacionándolos con los Estratos Calchaquíes pliocenos. Di Paola (1994) estudió los calcretas aflorantes al oeste de Santa Rosa del Conlara y los vinculó con procesos de pedogénesis, estimando una edad miocena para ellos. Las unidades San Roque y Las Mulitas fueron correlacionadas con las formaciones Paso de...
las Carretas y Río Quinto (Tapia y Rigal, 1933), respectivamente. En la segunda se hallaron restos de mega mamíferos fósiles (Scalabrinitherium sp, Ojeda y Chiesa, 2004), a los que se les otorgó una edad miocena superior.

Sobre la base de lo antes expuesto y el criterio formal seguido por Santa Cruz (1979), se mantiene para las sedimentitas neógenas aflorantes en el valle del río Conlara, la denominación de formaciones Paso de las Carretas y Río Quinto.

En las sierras de Córdoba, los sedimentos continentales rojos, friables a ligeramente cementados, han sido descritos originalmente por Santa Cruz (1972) bajo la denominación de Formación Villa Belgrano.

Distribucion areal

Los mayores afloramientos de sedimentitas neógenas aflorantes en el ámbito de la hoja corresponden a los ubicados en los alrededores de la localidad de El Retamo, al NO de Quines. Asomos aislados pueden observarse en el valle de Conlara y en el borde occidental de la sierra de Comechingones. Se presentan en forma de pequeños afloramientos expuestos en las barrancas del río Conlara en el sureste de Paso Grande, al oeste de Renca y San Pablo, norte de Concarán, sur de Santa Rosa del Conlara y este de Punta del Agua. A lo largo del pie de la sierra de Comechingones, existen varios afloramientos entre Merlo y Villa del Carmen que responden a las características de las unidades neógenas. En la vertiente oriental de la Sierra de Comechingones, algunos afloramientos se encuentran al este de Cañada de Álvarez.

Litología

La Formación Paso de Las Carretas está formada por areniscas gruesas de color marrón rojizo, en parte conglomerádicas, con cemento calcáreo margoso y silíceo. En ciertos lugares aparece una marga rojiza con concentraciones de caleedonia. Según Di Paola (1994), se trataría de calcetos que evolucionaron a partir del apilamiento de sedimentos fluviales de tamaño de bloque y guija en su parte inferior y arena-limo en la superior, con estratificación mediana a gruesa. La fracción clásica de los calcetos está compuesta principalmente de fragmentos de rocas del basamento cristalino, lo que los ubica cronológicamente por debajo de los acontecimientos volcánicos del terciario. Milana (1994) también reconoció, en la zona del Paso de las Carretas un paleosuelo calcáreo (tosca) con una potencia aproximada de 5 a 6 metros, aspecto terroso y estratificación mediana y ondulada, color blanco a rosado suave y granulometría de arena muy fina a limo, con icnofósiles provenientes de nidos de insectos y raíces.

La Formación Río Quinto cubre en discordancia a la anterior (Santa Cruz, 1979). Está constituida por limolitas finas a medias, poco arcillosas, con fracción psamítica escasa, color castaño claro y rosado anaranjado. En su mineralogía domina cuarzo, feldespato potásico y abundante biotita, destacándose la ausencia de trizas de vidrio volcánico. Algunas muestras presentan concreciones de caliza y yeso. La fracción arcillosa corresponde a montmorillonita (50%) e illita (50%). Los espesores alcanzan los 30 m en los afloramientos del río Quinto (Santa Cruz, 1979). Además, se extienden en el subsuelo de gran parte del área de estudio (Miró y Santa Cruz, 1973). En el río Conlara y en la zona próxima a Villa del Carmen, la formación yace en discordancia sobre el basamento cristalino y está constituida por areniscas conglomerádicas finas con abundante matriz limosa, color castaño rojizo claro, poco compacta (figura 33).

En las sierras de Córdoba, la unidad equivalente a la Formación Paso de Las Carretas es la Formación Villa Belgrano integrada por depósitos continentales rojos, friables a ligeramente cementados, que se disponen discordantemente sobre el basamento y depósitos cretácicos. Está compuesta por conglomerados y brechas medianas a finas con matriz limo-arenosa que se presentan en cuerpos mantiformes con bases irregulares o netas. Los clastos son angulosos a subredondeados e incluyen una gran proporción de fragmentos basálticos cretácicos. Las capas comienzan con una gradación inversa para continuar con una estratificación cruda o con gradación normal, entre estas se intercalan lentes y capas de areniscas. El conjunto tiene una ligera cementación calcárea y hacia el techo presenta niveles de calcetos laminares.

Ambiente de depositacion

Según Di Paola (1987), los flanglomerados y depósitos fluviales miocenos (Formación Paso de Las Carretas) son mayormente del tipo capas rojas, caracterizados por la falta de alteración de la fracción clásica y la presencia de paleosuelos calcáreos, indicadores de condiciones climáticas áridas a semiáridas para el período.

Los depósitos de la Formación Río Quinto son predominantemente de origen fluvial, con facies
Villa de Merlo

47
distales con preferencia eólicas (loessoides). La discordancia observada entre las formaciones Paso de Las Carretas y Río Quinto correspondería a los movimientos de la Fase Quechua (Mioceno tardio) que habría reactivado las fallas ubicadas hacia el oeste del área de procedencia, elevando e inclinando los depósitos miocenos, como la Formación Paso de Las Carretas y equivalentes. La reactivación tectónica habría producido una nueva secuencia fluvial (Formación Río Quinto) arenoso limoso, con estratificación paralela y en artesa, con intercalaciones de gravas, constituidas por detritos derivados de rocas del basamento y escasos clastos de vulcanitas.

Prado et al. (1998) infirieron un origen subaéreo con procesos pedogenéticos predominantes e indicaron que por sus características texturales se trataría de antiguos sedimentos loéssicos. La presencia de rizoconcreciones, la abundancia de carbonato de calcio pulverulento a lo largo de todo el perfil y las características texturales predominantemente limosas, hicieron inferir antiguos procesos pedogenéticos. Estas características y las variaciones de facies indicarían condiciones ambientales similares a las actuales, es decir, áridas a semiáridas con estación lluviosa.

Relaciones estratigráficas
Los depósitos se apoyan en discordancia sobre el basamento cristalino y están cubiertos por depósitos loessoides pleistocenos. Generalmente están inclinados levemente hacia el este por efecto de la basculación de los bloques serranos.

Edad y correlaciones
Las formaciones Paso de las Carretas y Río Quinto podrían correlacionarse respectivamente con las formaciones San Roque y Cruz de Piedra reconocidas al sur de la sierra de San Luis (Pastore y Ruiz Huidobro, 1952; Flores y Criado Roque, 1972; Pascual y Bondesio, 1981; Di Paola, 1994). Estas unidades fueron correlacionadas con la Formación Los Llanos (Pastore y Ruiz Huidobro 1952, Flores y Criado Roque 1969). Además, la Formación Paso de las Carretas también sería correlacionable con la Formación Papagayos (Miró y Santa Cruz, 1973) y con la Formación Villa Belgrano (Santa Cruz, 1972). Los calcretos de la Formación Paso de las Carretas han sido asignados al Mioceno, mientras que la Formación Río Quinto tendría una edad pliocena (Di Paola, 1994).

2.3.2. NEÓGENO- CUATERNARIO

2.3.2.1. Mioceno superior- Pleistoceno inferior
Complejo Volcánico El Morro (13a, 13b, 13c)
13a Andesitas, dacitas, lacitas y traquitas en forma de domos y coladas; 13b Brechas volcánicas traquítico andesíticas y piroclastitas asociadas; 13c Travertinos .

Antecedentes
Distribución areal

El complejo volcánico se extiende sobre una faja de unos 90 kilómetros de largo que atraviesa con rumbo NO la sierra de San Luis, desde la sierra del Morro hasta la Carolina. En el ámbito de la Hoja, los centros volcánicos constituyen una serie de afloramientos denominados Cerro Inti Huasi, Cerro Pelado, Cerros Largos, Cerro Tiporco y Cerros del Rosario (figura 34).

Litología y estructura

El complejo está formado por domos, coladas de lava y díques de composición andesítica, dacítica, lacítica y traquítica, acompañados por facies piroclásticas (Llambias y Brogioni, 1981; Sruoga *et al.*, 1996; Urbina *et al.*, 1997). En la zona de La Carolina (próxima al borde oeste de la Hoja), Sruoga *et al.* (1996) describieron un sistema de maar-diatreme que comprende depósitos de surge piroclásticos y brechas freatomagmáticas con domos de emplazamiento póstumo. En cambio, en la zona de Cañada Honda (próximo al borde sur de la Hoja), la asociación de facies lávicas con niveles piroclásticos intercalados ha permitido inferir que la actividad volcánica estuvo vinculada con la construcción de un estratovolcán (Urbina, 2005; Suárez Funes, 2007; Vázquez, 2007; Urbina y Sruoga, 2008). En el extremo oriental de la faja volcánica, en los cerros del Rosario y El Morro, se describieron depósitos volcanoclásticos relacionados con el desarrollo de calderas (Brogioni, 1990; Otamendi, 1990; Lacreu y Di Paola, 1992).

Desde el punto de vista geoquímico, las rocas volcánicas mesosilíceas corresponden a series de depósito de maars-diatramas que se han formado por la depresión de las domos de lava y la formación de brechas freatomagmáticas con domos de emplazamiento póstumo. En cambio, en la zona de Cañada Honda (próximo al borde sur de la Hoja), la asociación de facies lávicas con niveles piroclásticos intercalados ha permitido inferir que la actividad volcánica estuvo vinculada con la construcción de un estratovolcán (Urbina, 2005; Suárez Funes, 2007; Vázquez, 2007; Urbina y Sruoga, 2008). En el extremo oriental de la faja volcánica, en los cerros del Rosario y El Morro, se describieron depósitos volcanoclásticos relacionados con el desarrollo de calderas (Brogioni, 1990; Otamendi, 1990; Lacreu y Di Paola, 1992).

Desde el punto de vista geoquímico, las rocas volcánicas mesosilíceas corresponden a series de depósito de maars-diatramas que se han formado por la depresión de las domos de lava y la formación de brechas freatomagmáticas con domos de emplazamiento póstumo. En cambio, en la zona de Cañada Honda (próximo al borde sur de la Hoja), la asociación de facies lávicas con niveles piroclásticos intercalados ha permitido inferir que la actividad volcánica estuvo vinculada con la construcción de un estratovolcán (Urbina, 2005; Suárez Funes, 2007; Vázquez, 2007; Urbina y Sruoga, 2008). En el extremo oriental de la faja volcánica, en los cerros del Rosario y El Morro, se describieron depósitos volcanoclásticos relacionados con el desarrollo de calderas (Brogioni, 1990; Otamendi, 1990; Lacreu y Di Paola, 1992).

Desde el punto de vista geoquímico, las rocas volcánicas mesosilíceas corresponden a series de depósito de maars-diatramas que se han formado por la depresión de las domos de lava y la formación de brechas freatomagmáticas con domos de emplazamiento póstumo. En cambio, en la zona de Cañada Honda (próximo al borde sur de la Hoja), la asociación de facies lávicas con niveles piroclásticos intercalados ha permitido inferir que la actividad volcánica estuvo vinculada con la construcción de un estratovolcán (Urbina, 2005; Suárez Funes, 2007; Vázquez, 2007; Urbina y Sruoga, 2008). En el extremo oriental de la faja volcánica, en los cerros del Rosario y El Morro, se describieron depósitos volcanoclásticos relacionados con el desarrollo de calderas (Brogioni, 1990; Otamendi, 1990; Lacreu y Di Paola, 1992).

Desde el punto de vista geoquímico, las rocas volcánicas mesosilíceas corresponden a series de depósito de maars-diatramas que se han formado por la depresión de las domos de lava y la formación de brechas freatomagmáticas con domos de emplazamiento póstumo. En cambio, en la zona de Cañada Honda (próximo al borde sur de la Hoja), la asociación de facies lávicas con niveles piroclásticos intercalados ha permitido inferir que la actividad volcánica estuvo vinculada con la construcción de un estratovolcán (Urbina, 2005; Suárez Funes, 2007; Vázquez, 2007; Urbina y Sruoga, 2008). En el extremo oriental de la faja volcánica, en los cerros del Rosario y El Morro, se describieron depósitos volcanoclásticos relacionados con el desarrollo de calderas (Brogioni, 1990; Otamendi, 1990; Lacreu y Di Paola, 1992).

Desde el punto de vista geoquímico, las rocas volcánicas mesosilíceas corresponden a series de depósito de maars-diatramas que se han formado por la depresión de las domos de lava y la formación de brechas freatomagmáticas con domos de emplazamiento póstumo. En cambio, en la zona de Cañada Honda (próximo al borde sur de la Hoja), la asociación de facies lávicas con niveles piroclásticos intercalados ha permitido inferir que la actividad volcánica estuvo vinculada con la construcción de un estratovolcán (Urbina, 2005; Suárez Funes, 2007; Vázquez, 2007; Urbina y Sruoga, 2008). En el extremo oriental de la faja volcánica, en los cerros del Rosario y El Morro, se describieron depósitos volcanoclásticos relacionados con el desarrollo de calderas (Brogioni, 1990; Otamendi, 1990; Lacreu y Di Paola, 1992).

Desde el punto de vista geoquímico, las rocas volcánicas mesosilíceas corresponden a series de depósito de maars-diatramas que se han formado por la depresión de las domos de lava y la formación de brechas freatomagmáticas con domos de emplazamiento póstumo. En cambio, en la zona de Cañada Honda (próximo al borde sur de la Hoja), la asociación de facies lávicas con niveles piroclásticos intercalados ha permitido inferir que la actividad volcánica estuvo vinculada con la construcción de un estratovolcán (Urbina, 2005; Suárez Funes, 2007; Vázquez, 2007; Urbina y Sruoga, 2008). En el extremo oriental de la faja volcánica, en los cerros del Rosario y El Morro, se describieron depósitos volcanoclásticos relacionados con el desarrollo de calderas (Brogioni, 1990; Otamendi, 1990; Lacreu y Di Paola, 1992).
calcoalcalinas normales a calcoalcalinas de alto potasio y shoshoníticas (Brogioni, 1987b; Urbina et al., 1997) y exhiben un enriquecimiento en potasio a medida que disminuye la edad de las rocas, tanto a escala regional como local. Otras particularidades geoquímicas indican un ambiente de arco vinculado con subducción (Urbina et al., 1997).

Las vulcanitas tienen textura porfírica con pastas afaníticas y están constituidas por plagioclasa, sanidina, hornblenda, augita o egirina-augita, biotita y cuarzo, como accesorios suele encontrarse titanita. La andesita es la roca predominante en los Cerros Largos, Tiporco y del Rosario. El cerro Pelado, en cambio, está formado por traquititas (Brogioni, 1987b, 1990).

La geofísica aérea muestra que las rocas volcánicas tienen altos magnéticos y en la radimetría de potasio. Las susceptibilidades magnéticas de los intrusivos dan valores entre 1000 y 3000 x 10⁻⁵ SI, mientras que en las piroclastitas los valores oscilan entre 400 y 800 x 10⁻⁵ SI (Sims et al., 1997).

Los depósitos piroclásticos están bien preservados, particularmente en la región de los cerros del Rosario. Se los reconoce por sus coloraciones blanquecinas o grises y buena estratificación. El espesor de las capas varía entre centímetros y metros; la consistencia puede ser dura o friable y consisten en una combinación de pómez, cenizas y fragmentos líticos con frecuentes bombas de vulcanitas y de basamento. Brechas piroclásticas han sido observadas en lasadyacencias del cerro Tiporco. Depósitos hidrotermales tales como travertino y ónix calcáreo aparecen en los alrededores del cerro Tiporco (cantera Santa Isabel). El ónix calcáreo forma venas de alrededor de 2 m de ancho que intruyen el basamento esquistoso o se las encuentra interestratificadas con depósitos piroclásticos. Las venas están formadas por carbonatos color verde y marrón; presentan drusas y cristalización tardía de aragonita y fluorita. El travertino forma generalmente un horizonte rígido (probablemente una paleo superfcie) y está bien preservado al NO del cerro Tiporco.

Los centros volcánicos más erosionados ubicados hacia el NO, están asociados con una significativa alteración hidrotermal relacionada con mineralizaciones de oro y plata.

Edad y correlaciones

Las vulcanitas intruyen y cubren los complejos metamórficos Pringles y Conlara. Las rocas piroclásticas rodean a los centros volcánicos y están diversamen te erosionadas y retra bajadas.

De acuerdo con las edades obtenidas en el sector occidental, el vulcanismo habría comenzado a los 11 Ma (Urbina y Sruoga, 2008) y se habría extendido hasta los 1, 9 Ma (Ramos et al., 1991; Urbina, 2002). Así las rocas volcánicas tienen edades comprendidas entre el Mioceno superior al Pleistoceno inferior. El cuadro 2 muestra diversas dataciones realizadas en los centros volcánicos principales.

<table>
<thead>
<tr>
<th>Nº de muestra y localización</th>
<th>Descripción de la muestra</th>
<th>Material datado</th>
<th>edad K-Ar</th>
<th>Referencias</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Morro</td>
<td>Dique traquíaandesitico</td>
<td>Roca total</td>
<td>1,9 ± 0,2 Ma</td>
<td>Ramos et al. (1991)</td>
</tr>
<tr>
<td>Distrito Cerros del Rosario</td>
<td>Dacita</td>
<td>Roca total</td>
<td>2,6 ± 0,6 Ma</td>
<td>Ramos et al. (1991)</td>
</tr>
<tr>
<td>El Morro</td>
<td>Andesita intracaldera</td>
<td>Roca total</td>
<td>2,6 ± 0,7 Ma</td>
<td>Ramos et al. (1991)</td>
</tr>
<tr>
<td>Dique traquítico, La Carolina</td>
<td>Dique traquítico</td>
<td>Sanidina</td>
<td>6,3 ± 0,3 Ma</td>
<td>Sruoga et al. (1996)</td>
</tr>
<tr>
<td>El Morro</td>
<td>Andesita precaldera</td>
<td>Roca total</td>
<td>6,4 ± 0,6 Ma</td>
<td>Ramos et al. (1991)</td>
</tr>
<tr>
<td>Depósito La Reynela, Cañada Honda</td>
<td>Alteración hidrotermal</td>
<td>Illita</td>
<td>7,3 ± 0,2 Ma</td>
<td>Urbina y Ogger (2001)</td>
</tr>
<tr>
<td>Cerro Fan de Azahar, distrito La Carolina</td>
<td>Doma dacitico</td>
<td>Roca total</td>
<td>7,3 ± 0,4 Ma</td>
<td>Urbina et al. (1995)</td>
</tr>
<tr>
<td>Cerro Tomolastia, La Carolina</td>
<td>Domo dacitico</td>
<td>Sanidina</td>
<td>7,5 ± 0,4 Ma</td>
<td>Urbina et al. (1995)</td>
</tr>
<tr>
<td>Cerro Mogote, La Carolina</td>
<td>Alteración hidrotermal</td>
<td>Sanidina</td>
<td>7,8 ± 0,2 Ma</td>
<td>Urbina (2005)</td>
</tr>
<tr>
<td>Tres Cerros, Tres Cerros, La Carolina</td>
<td>Andesita de domo</td>
<td>Roca total</td>
<td>8,2 ± 0,4 Ma</td>
<td>Sruoga et al. (1996)</td>
</tr>
<tr>
<td>Cerro del Valle, Cañada Honda</td>
<td>Andesita de domo</td>
<td>Roca total</td>
<td>8,49 ± 0,2 Ma</td>
<td>Urbina y Ogger (2001)</td>
</tr>
<tr>
<td>Verde, distrito Cañada Honda</td>
<td>Dique andar andesitico</td>
<td>Roca total</td>
<td>9,5 ± 0,5 Ma</td>
<td>Urbina et al. (1995)</td>
</tr>
<tr>
<td>La Caspa, Cañada Honda</td>
<td>Alteración hidrotermal</td>
<td>Illita</td>
<td>9,9 ± 0,3 Ma</td>
<td>Urbina (2005)</td>
</tr>
<tr>
<td>Diente Verde, La Carolina</td>
<td>Alteración hidrotermal</td>
<td>Illita</td>
<td>11,2 ± 0,4 Ma</td>
<td>Urbina y Sruoga (2008)</td>
</tr>
</tbody>
</table>

Cuadro 2: Dataciones K-Ar de vulcanitas terciarias de la sierra de San Luis
En correspondencia con las edades obtenidas, los yacimientos asociados al vulcanismo del sector occidental son más antiguos y se habrían formado a mayor profundidad, mientras que el sector oriental exhibe yacimientos carbonáticos y zonas de alteración hidrotermal que corresponderían a niveles más superficiales del sistema epitermal (Urbina, 2005).

Los pórfidos cupríferos ricos en oro, como los del yacimiento Diente Verde, similares a los depósitos de Bajo de la Alumbrera (Catamarca), se encuentran respectivamente en la transición hacia el sur y hacia el norte del segmento de subducción subhorizontal, entre los 27º y 33º de latitud sur (Jordan et al., 1983, Ramos et al., 2002), poniendo en evidencia la existencia de estructuras transversales que controlaron el emplazamiento del vulcanismo terciario y sus mineralizaciones (Urbina y Sruoga, 2009).

2.3.2.2. Plioceno- Pleistoceno

Depósitos pedemontanos antiguos (14)
Conglomerados matriz y clasto sostén, medianos a gruesos,

Antecedentes
Los depósitos de piedemonte han recibido distintos nombres; en el valle del Conlara, Miró y Santa Cruz (1973) denominaron Formación Clástica Gruesa al conjunto integrado por las unidades que, de base a techo, agrupan el Conglomerado Merlo, Formación Renca, los fanglomerados de la Formación Uspara y la Formación La Estanzuela. En el ámbito cordobés, Cantú (1992) describió un cono antiguo en la zona de Alpa Corral.

Distribución areal
Los depósitos de piedemonte antiguos afloran en la ladera occidental de las sierra de Comechingones, con potencias promedio entre 150 a 200 metros en el subsuelo de la depresión del Conlara (Miró y Santa Cruz, 1973). En Alpa Corral está preservado un abanico aluvial compuesto por arenas finas con gravas dispersas y arenas medias a gruesas con intercalaciones de gravas (Cantú, 1992).

Relaciones estratigráficas, edad y correlaciones
La edad de estos depósitos pedemontanos estaría vinculada al levantamiento principal de las sierras Pampeanas en el período Plioceno- Pleistoceno inferior a medio (Santa Cruz, 1972; Latrubesse et al., 1990; Cantú, 1992), ascenso que produjo un periodo erosivo de gran intensidad.

La unidad se correlaciona con las formaciones Estancia Belgrano (Santa Cruz, 1972 a, b, 1973), Cuchi Corral (Pessio, 1989), Brochero (Sayago, 1979) y Las Chacras (Latrubesse et al., 1990).

2.3.3. CUATERNARIO

Los depósitos cuaternarios de la región han estado controlados por la actividad tectónica y una alternancia de ciclos climáticos húmedos y áridos.

2.3.3.1. Pleistoceno

Formación Pampeano (15)
Limos

Antecedentes
Los depósitos cuaternarios de la región han estado controlados por la actividad tectónica y una alternancia de ciclos climáticos húmedos y áridos.
tintas composiciones dentro de la unidad. Riggi et al. (1986) separaron por primera vez dos unidades litoestratigráficas (Formación Ensenada y Formación Buenos Aires) utilizando un criterio paleontológico ya que no abundan particularidades líticas que permitan su separación, asignándoles una edad mamífero Ensenadense y Lujanense respectivamente (en el sentido de Pascual et al., 1965).

Con el nombre de Formación San Felipe, Santa Cruz (1979) incluyó las limolitas arcillosas, algo arenosas, con abundante cemento calcáreo, similares a las «toscas» del Pleistoceno Inferior y Medio de la región pampeana; el autor reconoció afloramientos en el subsuelo hasta el embalse de San Felipe y también en las localidades de San Pablo y Tilisarao, apoyando sobre las sedimentitas de la Formación Río Quinto.

Distribución areal

En la llanura cordobesa, la unidad aflora en la base de las barrancas del río Chocancharava (río Cuarto) y su curso alto conocido como río de Las Barrancas. Según Cantú y Degiovanni (1984), el espesor aflorante cerca de las sierras puede llegar a varias decenas de metros, aunque es común que no supere los 10 metros, quedando limitada al lecho de los ríos. En el valle del Conlara quedan pocos lugares sin que la unidad haya sido retrabajada y mezclada, a diferencia de lo que ocurre en Córdoba donde se conservan inalterados los depósitos originales de loess.

Litología y estructura

La Formación Pampeano es el resultado de un ciclo climático árido. Está compuesta principalmente por limos cólicos, loéssicos, de color pardo rojizo a pardo amarillento, con alto contenido de carbonato disperso y presencia de calcretas y sedimentos limosos y limoarenosos, muy finos, con niveles que contienen nódulos de cementación de hierro y sílice (Cantú, 1992). El origen eólico fue confirmado por Eric (1986) y su mineralogía indica un aporte del basamento cristalino de Sierras Pampeanas (Qtz, Fel, Bt, Ep y Tur). Además, contienen 11-30% de vidrio volcánico ácido.

Dentro de la unidad se reconoció un nivel inferior algo más arcilloso y compacto que presenta concreciones de carbonato de calcio epigenético, conocidas como toscas; el nivel superior tiene características similares pero es más friable y puede incluir concreciones carbonáticas de origen pedogenético. Entre estos sedimentos suelen dispersions areniscas conglomeradicas en forma de cuerpos lenticulares, con estratificación cruzada, en artesa y planar. Si bien se ha interpretado que los sedimentos limosos tienen un origen eólico, la presencia de lentes de arena y grava indica cierta actividad fluvial.

En el río de Las Barrancas, Cantú (1992) describió un perfil tipo que está representado por 32 m de limos eólicos, loessoides, que contienen nueve niveles de calcretas; por encima, unos lentes de arena y grava podrían estar indicando el comienzo de un cambio climático. En las barrancas del río Conlara, Chiesa et al. (1997) describieron una sucesión de 7 metros de potencia con diferentes procesos pedogenéticos coronados por horizontes humíferos. La secuencia comienza con una base de 0, 60 m de gravas finas y arenas medianas, de carácter fluvi al, seguida por limos color pardo amarillento con restos de vertebrados fósiles, arcillas limosas color oliva y limos arcillosos color pardo grisáceo.

Edad y correlaciones

Esta formación ha sido asignada al Pleistoceno medio-tardío, por el hallazgo de un maxilar de Smilodon sp.; Sanabria y Argüello (2003) correlacionan a esta Unidad con el Miembro inferior de la Formación Rio Primero (Santa Cruz, 1972) y con la Unidad «Limos Arcillosos». Las dataciones por termoluminisencia (TL), luminiscencia ópticamente estimulada (OSL) y luminiscencia ópticamente estimulada por infrarrojo (IRSL) arrojan una edad que varía entre los 99.7 ± 17, 5 ka y los 55, 6 ± 10 ka. Localmente, sobre la Formación Pampeano, se desarrolla un suelo denominado Geosuelo Estancia El Cerrito (Cantú, 1998), el cual es asociado a la formación de calcretas locales que arrojaron edades radiocarbónicas que varían entre 27, 75 ± 1 ka y 22, 8 ± 0, 5 ka AP, ubicándolo en el Pleistoceno tardío (Schiavo, 2003; Degiovanni et al., 2003).
Formación Río Conlara (16)
Arenas y gravas

Antecedentes y Distribución areal

Rigal (en Methol, 1971) describió el contenido fosilífero (gastropodos y diatomeas) de esta unidad. En el área de influencia del río Conlara, Santa Cruz (1979) denominó Formación Río Conlara a los depósitos macizos limos arenosos, con grava dispersa o formando lentes, que afloran como un conjunto de lomadas alargadas. Más al sur, el mismo autor describió depósitos similares con el nombre de Formación Renca. En la zona cordobesa, la unidad sedimentaria equivalente ha sido denominada Formación Chocancharava (Cantú, 1992) sobre la que Cruz (2007) realizó un estudio paleontológico y paleoambiental.

La unidad incluye un ciclo aluvial-coluvial asociado a todos los ríos y a los principales arroyos de Córdoba y San Luis.

Litología y estructura

Los sedimentos de esta unidad aluvial afloran a lo largo del río Conlara, entre las localidades entre San Pablo y Santa Rosa de Conlara, donde se exponen espesores entre 5 y 8 m. Allí se reconocieron varios niveles estratificados dispuestos horizontalmente, compuestos por arena, arena limosa, limo arenoso y niveles de grava fina a gruesa.

En varios perfiles levantados en las barrancas del río Conlara, Rigal (en Methol, 1971) observó sedimentitas lacustres con un contenido fosilífero representado por gasterópodos, caparazones de la formación Chocancharava y los depósitos pedemontanos antiguos. Suprayacen las sucesiones entoscadas de la Formación Pampeano y son cubiertos por extensos depósitos eólicos de la Formación General Paz.

Relaciones estratigráficas

En San Luis, la secuencia apoya sobre el basamento cristalino, las sedimentitas de la Formación Río Quinto y, parcialmente, sobre conglomerados de los depósitos pedemontanos antiguos. Suprayacen las sucesiones entoscadas de la Formación Pampeano y son cubiertos por extensos depósitos eólicos de la Formación General Paz.

Edad y correlaciones

La sucesión estratigráfica y el contenido paleontológico en la región permiten establecer correlaciones entre las formaciones Río Conlara, Chocancharava y Río Primero.

En la llanura del sur de Córdoba estos depósitos aluviales son conocidos como Formación Chocancharava. De acuerdo a Cantú (1992, 1998) y Cantú et al. (2004), los depósitos aluviales de la Formación Chocancharava son asignables al Pleistoceno Superior. Los taxones de mamíferos registrados para las formaciones Chocancharava y La Invernada: Megatherium americanum, Glyptodon clavipes, Scelidotherium leptocephalum y Mylodon darwini, son exclusivos de las edades Bonaerense (Pleistoceno Medio) y Lujanense (Pleistoceno Superior -Holoceno Inferior), mientras que los géneros Panochthus y Sclerocalyptus se registran desde el Ensenadense hasta el Lujanense (Scillato-Yané et al., 1995; Cione et al., 1999).

2.3.3.2. Pleistoceno- Holoceno

Depósitos loéssicos (17)
Sedimentos loéssicos (limos, limos arenosos y limos arcillosos).

Antecedentes

Los depósitos loéssicos fueron denominados Formación General Paz por Santa Cruz (1973) para
referirse a la unidad loéssica aflorante al este de la Sierra Chica de Córdoba. Más al Sur, Cantú (1992) utilizó la nombre de Formación La Invernada para describir un manto tabular de loess típico de 2 a 6 m de espesor visible y de gran extensión areal. En la provincia de San Luis, la unidad ha sido descrita y denominada informalmente Formación La Estanzuela (Miró y Santa Cruz, 1973) y posteriormente redefinida como Formación San Luis (Santa Cruz, 1979).

Distribución areal

Aflora a lo largo del valle de Conlara y en la llanura al Este de las sierras de Córdoba. Constituye las extensas pampas de altura de la sierra de San Luis (pampa de San Martín) y otras menores en la sierra de Comechingones (como por ejemplo al norte del cerro Aspero y en Yacanto de Calamuchita).

Litología y estructura

Los depósitos loéssicos están constituidos por limos medianos a finos, con arcillas subordinadas y escasas arenas. Son sedimentos eólicos de color pardo amarillento y sin estructuras visibles, friables y pulverulentas. En los niveles basales el loess se presenta macizo o ligeramente laminado, con una estratificación tenuemente marcada por la presencia de delgadas capas de arena o gravillas. Contiene carbonato de calcio pulverulento, disperso o en forma de concreciones. Localmente presenta intercalaciones de depósitos fluviales efímeros constituidos por lentes de arena gruesa y guijos de tipo torrenciales.

Los espesores observados en cárcavas o terrazas fluviuales varían entre 4 y 7 metros.

Relaciones estratigráficas

La unidad cubre discordantemente las formaciones Pampeano y Río Conlara, tanto en las zonas de interfluvios como en las terrazas fluviuales.

Edad y correlaciones

Los sedimentos se habrían originado por un ciclo de aridez que se correspondería con el Último Máximo Glacial y el Tardiglacial (Pleistoceno Superior- Holoceno).

En la zona de la llanura, la unidad puede ser correlacionada con la Formación Tezano Pintos (Kröhling, 1993; Iriondo y Kröhling, 1995). Los sedimentos aflorantes en las pampas de altura pueden correlacionarse con la Formación Carbonier (Carignano, 1997) y con la Formación Chuña (Carignano, 1996, 1997).

2.3.3.3. Holoceno

Depósitos pedemontanos (18a)

Grava y arena de abanicos aluviales

Se presentan en la base de los cordones montañosos donde el relieve de los escarpes de falla genera gran cantidad de sedimento; pasan gradualmente a depósitos de la llanura aluvial. Los abanicos más desarrollados se encuentran en la denominada ladera occidental de la sierra de Comechingones y el frente serrano septentrional de la sierra de San Luis.

La unidad está constituida por gravas y arenas pobremente clasificadas y sin estratificación visible. Pueden contener bloques de diversos tamaños. Cubren total o parcialmente a los depósitos de piedemonte pleistocenos.

Depósitos de remoción en masa (18b)

Bloques

Los depósitos de remoción en masa en la sierra de San Luis han sido estudiados por González Díaz et al. (1997). Uno de ellos es conocido como avalancha Las Cañas debido a la proximidad con el puesto epónimo.

En la zona de trabajo, estos sedimentos se hallaron en varios sectores. Una zona de avalancha de roca se localiza en la ladera occidental del cordón del Realito, a unos 15 km al SO de Luján. En el cerro Intihuasi se observó la cicatriz de una avalancha que afectó los depósitos piroclásticos (figura 34b). Al este de la localidad de Santa Rosa de Calamuchita afloran 4 metros de sedimentos con características loessoides pero con una morfología de lóbulos asociados a fenómenos de remoción en masa (32°04’6.23”S, 64°31’19.58”O); estos lóbulos están cubiertos por depósitos de flujo pedemontano, constituidos por un conglomerado clasto sostén con bloques de hasta 0, 40 metros.

La avalancha del cordón del Realito se generó debido a la abrupta escarpa de falla del margen occidental de la sierra, que presenta desniveles de 500 a 600 metros. Allí se puede observar la zona de desprendimiento (cicatriz cóncava) y la zona de acumulación con forma de lenguas que alcanza 3000 m de largo y anchos de hasta 2600 metros. Estos depósitos contienen grandes bloques angulosos de alrededor de 150 m³, en su mayoría de composición granítica.
Depósitos aluviales (19)
Arenas, gravas y conglomerados

Los depósitos fluviales son sedimentos granulares asociados a los colectores principales. En San Luis se destacan los depósitos de los ríos Luján, Quines y Conlara, mientras que en Córdoba los de los ríos de los Sauces y de las Barrancas-Chocancharava.

La unidad está formada por arenas, gravas y conglomerados. En lugares constituyen depósitos mantiformes asociados a descargas estivales, típicas de climas árido-semiáridos.

En su mayoría corresponden a sedimentos recientes.

Depósitos eólicos (20)
Arena

Los depósitos eólicos abarcan una considerable porción de la llanura ubicada al norte de la sierra de San Luis y cubren en parte los depósitos de la planicie fluvial de los ríos Quines y Luján.

Están representados por cuerpos mantiformes de arena moderadamente seleccionada, de color pardo-amarillento, friables y macizos con espesores que oscilan entre 1 y 4 metros.

En la zona de la Hoja Villa Dolores, la unidad es denominada Formación Las Ollas (Carignano, 1996, 1997). Hacia el oeste, Ramonell et al. (1992) pusieron el nombre de Formación Puerta Negra, para identificar un extenso campo de dunas longitudinales.

3. ESTRUCTURA

Las rocas de basamento de las sierras de Comechingones y San Luis han sido afectadas por tres eventos deformativos, metamórficos y magmáticos denominados Ciclo Pampeano (Cámbrico), Ciclo Famatiniano (Ordovícico) y Ciclo Achaliano (Devónico). Los complejos metamórficos preservan evidencias de los eventos más antiguos, mientras que las filitas de la Formación San Luis solamente registra los efectos de las últimas deformaciones. Toda la región fue posteriormente afectada por fallamiento extensional durante el Mesozoico y fallamiento inverso y basculación de bloques durante el Ciclo Andino cenozoico.

Ciclo Pampeano: deformación y metamorfismo cámbricos

El rasgo estructural más antiguo observable en la sierra de Comechingones corresponde a la foliación metamórfica de alto grado, bien preservada en gneises pelíticos y anfibolitas de los complejos metamórficos cordobeses. La foliación S1 está definida por leucosomas y orientación de biotita, cuarzo y sillimanita, con una lineación L1 definida por sillimanita y cuarzo. En los ortogneises tonalíticos, la foliación está definida por la lineación de las hojas de biotita, con una débil lineación cuarzo y biotita. En anfibolitas y rocas calcosilicáticas la foliación está muy bien diferenciada por el bandeado mineralógico, con la hornblendita alineada. Si bien los planes de foliación, de rumbo general NNO, inclinan moderadamente hacia el este, localmente la dirección de buzamiento puede variar por el intenso retrabajado que produjeron los eventos posteriores. La paragénesis sillimanita granate en los gneises pelíticos indica un metamorfismo en facies anfibolita (M1) y la gran cantidad de pegmatitas muscovíticas y leucosomas, formados subconcordantemente con la foliación S1, sugieren que tuvo lugar una fusión parcial vinculada con el mismo evento.

Dataciones U-Pb en circon y monacita de las sierras de Córdoba, que crecieron durante el M1 (Lyons et al., 1997), dieron edades de alrededor de 530 Ma (Camacho e Ireland, 1997).

Ciclo Famatiniano: deformación y metamorfismo ordovícicos

En la sierra de San Luis, las metapelitas del Complejo Metamórfico Pringles poseen una fábrica gnésica definida por sillimanita y biotita (S1 en este complejo, pero S2 a nivel regional), con lentes y pods de leucosomas cordierita-granatíferos. El bandeado gnésico tiene un rumbo NNE y buza moderadamente al este, con una lineación mineral de alto ángulo definida por sillimanita y biotita.
El complejo contiene fajas miloníticas de pocas decenas de metros de ancho, paralelas al bandeo gnéisico. Las paragénesis de alto grado y la lineación de estiramiento paralela a la de los gnéises, sugiere que se formaron sincrónicamente (Sims et al., 1997). Los indicadores cinemáticos de los gnéises y milonitas indican un sentido de desplazamiento de bloque este sobre oeste.

En los gnéises y esquistos del Complejo Metamórfico Conlara se formó una esquistosidad penetrativa acompañada por una lineación mineral de biotita, muscovita y cuarzo. El grado metamórfico alcanzado es facies de anfibolitas inferior y esquistos verdes superior.

Numerosos cuerpos de pegmatita y granitos están intruidos sincrónicamente con la deformación y muestran un grado variado de plegamiento y recristalización; una edad U-Pb (uraninita) de 460 Ma ha sido obtenida de una de esas pegmatitas (Linares, 1959). Si bien esa edad es más joven que la obtenida para la granodiorita El Tamboreo y Bemberg (470±5Ma y 468±6Ma U-Pb SHRIMP, Sims et al., 1998; Stuart-Smith et al., 1999), la intenso deformación de las pegmatitas, que no afecta la Formación San Luis ni a las granodioritas Tamboreo y Bemberg y la ausencia de pegmatitas en la Formación San Luis, sugiere que la edad uraninita está reseteada o es una edad de enfriamiento. Esta edad es consistente con la edad Th-Pb (monacita) de 451 ± 10 Ma (Camacho e Ireland, 1997) derivada de la fábrica compresional de alto grado del Complejo Metamórfico Pringles (Sims et al., 1997).

Ciclo Achaliano: deformación y retrogradación devónicas

En la mayor parte de la región, las fábricas de alto grado pampeanas (D1) y famatíanicas (D2) han sido mayormente rotadas al paralelismo por una fábrica de cizalla penetrativa que está asociada a un prolongado episodio colisional denominado Ciclo Achaliano. Este episodio está marcado por el desarrollo de importantes zonas miloníticas con retrogradación metamórfica a facies de esquistos verdes y el emplazamiento de voluminosos plutones graníticos.

La deformación del Ciclo Achaliano fue repartida entre zonas de sobrecorrimientos y deslizamientos de rumbo, con relaciones de superposición repetidas. Los dominios entre las zonas de cizalla fueron plegados y replagados produciendo pliegues de interferencia en domos y cuencas. El esfuerzo fue concentrado en algunas zonas miloníticas principales, como en el caso de la faja de cizalla Tres Árboles- Las Albahacas entre los complejos metamórficos Comechingones y Conlara y la faja Río Guzmán que separa el Complejo Metamórfico Conlara de la Formación San Luis.

Sims et al. (1997) reconocieron 4 estilos de deformación dentro del Ciclo Achaliano:

Foliación milonítica penetrativa y plegamiento apretado a isoclinal, vinculados a sobrecorrimientos, en facies esquistos verdes. En el Complejo Metamórfico Conlara la foliación es una fábrica penetrativa definida por biotita, que rotó las fábricas anteriores al paralelismo. La interferencia con los pliegues subhorizontales de los complejos Pringles y Conlara, produjo patrones tipo domos y cuencas. En la Formación San Luis la estratificación está plegada isoclinalmente, con el desarrollo de un clivaje pizarroso plano axial, S1 en la Formación San Luis pero S3 a nivel regional, que se presenta entre las fajas de cizalla principales. La edad máxima para la primera fábrica de este evento es provista por la datación 403±6Ma U-Pb en circones (Camacho e Ireland, 1997) para el plutón granítico La Escalerilla que fue afectado por este tectonismo. Dentro de las milonitas, el cuarzo está recristalizado formando cintas, la biotita está deformada y localmente reemplazada por clorita, hematita y goethita, y la sillimanita M1 fue convertida en agregados de muscovita. Lineaciones minerales (L3) o espejos de fricción, que inclinan fuertemente al ENE, son definidos por alineación muscovita, clorita, cuarzo y biotita relicática rotada.

Cizallamiento dúctil con componente de rumbo. Zonas de cizalla de hasta 50 m de ancho se desarrollaron en varias áreas dentro de la sierra de San Luis. Una de ellas es la cizalla La Arenilla. Las zonas contienen una fábrica milonítica con una elongación mineral subhorizontal e indicadores cinemáticos bien desarrollados.

Sobrecorrimientos de bajo grado en zonas de cizalla discretas, con plegamiento y crenulación de la fábrica milonítica temprana. Importantes zonas de cizalla de bajo grado, como las cizallas Río Guzmán en San Luis y Tres Árboles en Córdoba, se superponen a las cizallas de rumbo. Tienen varios kilómetros de ancho y contienen fábricas con minerales en facies de esquistos verdes, que muestran un sentido de bloque este arriba, con una lineación inclinando al este, paralela a la primera fábrica L3. Contemporáneamente con estas zonas se habría formado un clivaje de crenulación regional asociado
con un plegamiento abierto de rumbo N-S. Los granitos devónicos del Complejo Magmático Achiras se habrían intruido subconcordantemente como láminas paralelas a la foliación S2, y junto con las metamorfitas fueron plegados como grandes pliegues volcados y pliegues chevron a escala mesoscópica (F3). Una débil crenulación plano axial (S3b) inclina moderadamente a fuertemente al ENE.

Fallamiento de rumbo frágil, conjugado en juegos NO y NE. Un sistema de fallas de rumbo, frágiles, rectilíneas y verticales, con direcciones ONO y NE, zonas de brecha y fracturas (von Gosen y Prozzi, 1996) afectan el basamento de las sierras de Córdoba y San Luis, desplazando en algunos lugares las foliaciones miloníticas S3 y sus pliegues relacionados. Las fallas se observan claramente en las imágenes satelitales y algunas pueden ser delineadas sobre la geofísica aérea como zonas de bajo magnetismo debido a la destrucción de la magnetita. Una de estas fallas de rumbo NO contiene una brecha silicificada de unos 5 m de ancho (figura 35), en las cercanías del cerro Loma Bola (65°0'23.124"O, 32°13'22.478"S). La orientación y relaciones conjugadas de las fallas de rumbo ONO y NE, zonas de brecha y fracturas indica una posible continuación del régimen compresivo E-O que acompaña el desarrollo de las superficies S3. Este sistema está bien desarrollado en las Sierras Pampeanas, donde edades Ar-Ar de micas en venas de cuarzo indican que el estadio comenzó a los 385 Ma, con un pico a los 370 Ma y continuó hasta los 355 Ma.

Extensión Mesozoica

En las Sierras Pampeanas, las sedimentitas cretácicas continentales, asociadas a derrames y diques basálticos, conforman una asociación de rift desarrollada en una serie de hemigrábenes asimétricos hundidos hacia el este, controlado por fallas directas. Durante la tectónica Andina estas fallas fueron reactivadas como fallas inversas, provocando la inversión de las cuencas cretácicas.

Ciclo Andino. Fallamiento inverso.

El tectonismo asociado con la colisión de las placas de Nazca y Sudamericana durante el Neógeno, generó en la región de Sierras Pampeanas un período de deformación extensional seguido de compresión desde el Neógeno Superior hasta el presente. Durante la fase extensional se formaron pequeñas cuencas orientadas NO-SE, donde se depositaron sedimentos que aún se preservan en algunos lugares. También durante este periodo se emplazó un vulcanismo shoshonítico calcioalcalino, alto en potasio, sobre una faja de unos 80 km paralela a las cuencas extensionales, que se extiende desde la sierra del Morro hasta La Carolina.

Luego del Plioceno Medio el vulcanismo cesó y comenzó un régimen compresional que produjo el levantamiento de bloques de basamento por la acción de fallas inversas.

La falla que levanta la sierra de Comechingones presenta un rumbo general N-S, es de carácter in-

Figura 35: Brecha silicificada en fractura de rumbo NO. Co Loma Bola, vista al noroeste. Punto 195- 65°0'23.124"O, 32°13'22.478"S.
verso de alto ángulo (Bojanich Marcovich, 1964; Methol, 1971; Gordillo y Lencinas, 1979) y tiene inclinaciones variables entre 45° y 55° (Costa et al., 1994; Costa y Morla, 1996; Costa y Vita Finzi, 1996; Murillo, 1996). Los planos de falla no suelen estar bien expuestos debido al abundante material aluvial que cubre su traza, sin embargo inmediatamente al sur de Papagayos puede observarse la zona de falla en las canteras de caolinita dentro del Granito Uspara, donde el granito, brechado y alterado a clorita y caolín, está cortado por fallas que buzan 45° al SE. La falla Comechingones es desplazada por fracturas oblicuas de rumbo NO, con un movimiento izquierdo, como puede observarse al norte de la localidad de Merlo y al sur del batolito del Cerro Áspero. Según la información de subsuelo aportada por Miró y Santa Cruz (1973) el máximo rechazo de la falla se ha verificado a la latitud de San Javier, con una componente vertical de 2.200 m, decreciendo hacia el sur, donde la falla se resuelve en una serie de ramificaciones como las que bordean la sierra de la Estanzuela.

La falla Comechingones está acompañada hacia el oeste por un ramal de menor expresión topográfica, conocido como falla El Molino (Costa et al., 1992), que se extiende entre San Javier y Los Molles. La estructura El Molino está marcada en el piedemonte por una serie de escarpas discontinuas, pero alineadas entre sí a través de un arreglo escalonado producto de la interacción con las fallas de dirección NO. Las escarpas generan desniveles de hasta cincuenta metros visibles en zonas donde afloran rocas de basamento metamórfico coronadas por una cubierta detrítica que puede alcanzar hasta unas pocas decenas de metros. En algunos lugares sólo están expuestos los depósitos pedemontanos antiguos junto con material coluvial. Estas geoformas se destacan como islas dentro de las unidades de abanicos y bajadas más recientes, contrastando además porque en muchos casos exhiben una leve inclinación hacia al este. Una buena exposición de la falla puede observarse en el cauce del arroyo El Molino, a unos 2 km al sur de la localidad de Merlo (Costa et al., 1992, 1994; Costa y Vita Finzi, 1996; Murillo, 1996); allí el plano de falla está orientado 80/45 y desplaza las rocas del basamento sobre unidades aluviales y coluviales recientes. El contenido de materia orgánica en algunos de estos sedimentos ha permitido obtener edades 14C que varían entre 1.080+ 70 Ap y 1.310+40 Ap (Costa y Vita Finzi, 1996). Las relaciones entre estas unidades estratigráficas permitieron a dichos autores reconocer un desplazamiento mínimo de 2, 15 m en el plano de falla durante el último milenio, producto de uno o varios sismos.

La falla Guacha Corral es el principal rasgo lineal que puede reconocerse en el interior de la sierra de Comechingones, fácilmente identificable sobre imágenes satelitales, debido a su imposición en la topografía y continuidad geográfica. Este lineamiento se puede seguir a lo largo de toda la hoja, desde Yacanto de Calamuchita, pasando por el borde este del batolito Cerro Áspero y continuando hacia el sur. La estructura es de carácter inverso.
La falla de la Sierra Chica (Massabie, 1987; Kraemer et al., 1988; Wagner-Manslau, 1988; Massabie y Szlafsztein, 1991; Martino et al., 1995) se extiende a lo largo de 200 kilómetros y constituye el frente de levantamiento de la Sierra Chica. En el área de la hoja tiene un rumbo N-S a NNO y ha sido también denominada falla Santa Rosa. Una cantera para extracción de áridos ubicada sobre la ruta provincial 51 (64°32'18.949" O 32°3'33.168"S), permite observar como la falla inversa pone en contacto gneises cámbricos sobre sedimentos cuaternarios (figura 36). El plano de falla tiene un rumbo N-S e inclina 50º al este. Se han citado desplazamientos de al menos 12 metros. Estas relaciones ponen en evidencia los movimientos que esta estructura ha experimentado en el Cuaternario.

La zona de falla inversa que levanta la sierra de San Luis fue denominada falla de San Luis por Flores (1969). En el sector de la Hoja abarca la faja entre el río La Majada y la localidad de Luján, allí González Díaz et al. (1997) observaron que la falla inversa tiene una inclinación de 35° E.

El frente serrano septentrional, entre Quines y la quebrada de Cautana, está controlado por un fallamiento normal, de orientación casi E-O, con planos que inclinan con alto ángulo hacia el norte. Los rechazos de falla disminuyen desde Quines hacia el este, hasta hacerse imperceptibles en la zona de Los Chañares. La estructura está desplazada por fallas de orientación N-S, tales como las fallas San Antonio, San Martín y Lafinur. Es probable que estas fallas normales hayan funcionado en respuesta al acomodamiento de bloques durante el alzamiento de dicha sierra.

Las fracturas del interior del macizo tienen principalmente rumbos NNE, definen bordes serranos e interrumpen la continuidad de la superficie de erosión regional. La depresión del Bajo de Véliz está marginada hacia el Este por una falla inversa que continúa hacia el sur con menor expresión topográfica, y es la causante del ascenso de la sierra de San Felipe, cuyo perfil asimétrico indica también el carácter inverso de la falla.

En la región intermontana conocida como depresión del río Conlara, la información del subsuelo (Bojanich Marcovich, 1964; Rossi, 1966a; Miró y Santa Cruz, 1973) indica un relleno sedimentario asimétrico, con un mayor espesor contra el pie de la sierra de Comechingones. Esta asimetría está relacionada con la disposición estructural de los bloques de basamento, reflejada por la suave pendiente de la superficie de erosión de la sierra de San Luis que se hunde bajo los sedimentos hacia la depresión oriental generada por el levantamiento de la sierra de Comechingones.

La coincidencia de zonas de fracturación frágil con la estructura interna del basamento, sugiere un importante control por parte de los rasgos estructurales antiguos. También muchas fracturas tienen una historia de repetidos movimientos. Las evidencias de fenómenos extensionales mesozoicos descritos en la región (Schmidt et al., 1993 y 1995; Gardini et al., 1996) sugieren también que dichas reactivaciones ocurrieron bajo diferentes regímenes tectónicos.

4. GEOMORFOLOGÍA

El área de estudio forma parte del sistema de las Sierras Pampeanas, unidad morfoestructural de extensión regional que ocupa el sector centro-oeste y parte del noroeste de la Argentina, entre la Cuenca Chaco-Paranaense al este, y el sector precordillerano al oeste. De acuerdo con los criterios de jerarquización del relieve propuesto por Sayago (1982), esta unidad es también conocida como Provincia Geomorfológica de Sierras Pampeanas. Sus rasgos fisiográficos más notorios están dados por la presencia de cordones orográficos de moderada altitud y laderas asimétricas, separados por depresiones intermontanas de orientación general N-S.

Caminos (1979) caracterizó a las Sierras Pampeanas como montañas de bloques fallados limitadas por fracturas de alto ángulo, compuestas por un basamento metamórfico o granítico. Los bloques ascendieron por fallamiento inverso y rotación (mecanismo descrito por González Bonorino, 1950a, en Caminos, 1979). Gordillo y Lencinas (1979) atribuyeron a dicho mecanismo la marcada asimetría del perfil transversal de los cordones serranos.

Los bloques serranos limitan las depresiones longitudinales rellenas con sedimentitas continentales de edad paleozoica superior a cenozoica, producto de diferentes ciclos de agradación fluviales y eólicos.

Si bien el origen de las Sierras Pampeanas se vincula con procesos geológicos desarrollados entre el Neoproterozoico y el Paleozoico Superior, su configuración actual es atribuida a las fases orogénicas que tuvieron lugar a partir del Mioceno inferior (Ramos, 1999).
Regiones geomorfológicas

Sobre la base de los criterios jerárquicos de división del relieve de Sayago (1982), se pueden reconocer de oeste a este, siete regiones geomorfológicas principales:

1. Depresión longitudinal central
2. Sierra de San Luis
3. Depresión del Conlara
4. Sierra de Comechingones
5. Depresión de Calamuchita-La Cruz
6. Planicie pedemontana
7. Sierra Chica

En conjunto, tanto las áreas serranas como las depresiones interserraras corresponden a unidades morfoestructurales de estilos tectónicos similares y, en consecuencia, sus rasgos geomórficos son también similares. En las áreas serranas se destaca particularmente la notoria asimetría en el arreglo topográfico de las laderas. Ello da origen a dos ambientes marcadamente diferentes: una ladera occidental corta y abrupta, caracterizada por la escarpa de falla que representa el frente de levantamiento andino de los bloques, y una ladera oriental más extendida con menor pendiente. Por su parte, las regiones interserraras corresponden a depresiones tectónicas con potentes rellenos sedimentarios donde se pueden diferenciar dos ambientes principales: las fajas pedemontanas proximales y las zonas de planicies distales.

1a. Piedemonte noroccidental y septentrional proximal de la sierra de San Luis

La Depresión Longitudinal Central (González Díaz, 1981) corresponde a una unidad de origen tectónico que separa la sierra de San Luis de las sierras de las Quijadas y del Gigante ubicadas hacia el oeste. En el área del mapa está representada minoritariamente en su extremo NO.

Desde el punto de vista geomorfológico el área se caracteriza por un relieve regionalmente llano producto de la nivelación producida por los aportes sedimentarios fluvio-aluviales provenientes de las áreas serranas circundantes y por la sedimentación de arenas muy finas y limos de origen eólico.

Se distinguen dos ambientes principales: el sector pedemontano proximal, asociado al frente occidental y septentrional de la sierra de San Luis, y un sector pedemontano distal dominado por los rasgos de una planicie loessoide donde se interdigitan fajas fluviales y zonas de explayamiento correspondientes a los cursos principales emergentes del frente serrano.

1b. Sector pedemontano distal

La unidad se caracteriza por un relieve llano con una pendiente hacia el norte muy suave, inferior al 0, 4%. Aquí los desniveles relativos muy raramente superan los 5 metros. La presencia de fajas fluviales y áreas de explayamiento por derrame, asociadas a los cursos principales emergentes de las áreas serranas, permite diferenciar dentro del sector pedemontano distal dos subunidades principales: la planicie loessoide y los depósitos de explayamiento.

1b-1. Planicie loessoide

Presenta un relieve monótono con predominio, en superficie, de depósitos finos, areno-limosos, con
guijas finas dispersas, producto de diferentes ciclos de agradación eólica (loess) y su posterior removilización aluvial. En su extremo noroeste se reconocen además áreas de dunas fijadas por la vegetación.

1b-2 Depósitos de explayamiento

Al norte de la localidad de Luján, los ríos de La Majada y Luján adquieren una dinámica meandriforme, corriendo en forma paralela de sur a norte, separados unos 2 km entre sí. Estos cursos son estacionales y aumentan su caudal durante las crecientes de la época estival, produciendo desbordes laterales y transportando su carga a varios kilómetros del frente serrano, donde finalmente se insumen. La dinámica lateral de los cursos meandriformes queda registrada en estas fajas fluviales por la presencia de paleocauces, mientras que el encauzamiento poco profundo ha favorecido los procesos de desbordes, dando lugar a depósitos sedimentarios arenosos y aren guijosos, que presentan una textura fotogeológica diferente al de la planicie loessoide.

En la imágenes satelitales se observa que la unidad presenta formas irregulares alrededor del colector principal, a veces con grosera forma de cono o abanico, como sucede en los sectores correspondientes al río Quines y a los derrames del río Conlara en su desembocadura al oeste de Lafinur.

2. Sierra de San Luis

Corresponde a un bloque serrano de unos 150 km de largo por 80 km de ancho máximo. Su eje mayor presenta una dirección NNE y su divisoria de aguas principal se encuentra recostada hacia el sector occidental, donde se desarrolla la línea de cumbres principal.

Esta divisoria define dos ambientes geomorfológicos principales: la estrecha y empinada ladera occidental y la ladera oriental mucha más extendida y de suave inclinación. A la primera se adiciona aquí el sector correspondiente al frente serrano septentrional, de características morfológicas similares.

2a Ladera occidental y frente serrano septentrional

Las laderas constituyen fajas angostas de anchos variables entre 1, 5 y 4 km, con pendientes generales superiores al 35%. El sector al sur del río Luján presenta los mayores desniveles entre el frente serrano y el inicio del piedemonte (900 m en promedio). Los interfluvios son agudos y las quebradas son profundas. En las cercanías del río La Majada se han reconocido avalanchas de rocas, vinculadas con eventos paleosísmicos (González Díaz et al., 1997). Entre los ríos Luján y Quines, el frente presenta un contorno sinuoso, con engolfamientos y la presencia de algunos montes isla. El desnivel relativo tiene valores entre 200 y 300 m y los valles tienen direcciones predominantes paralelas a la estructura interna del basamento. El sector septentrional, entre Quines y la quebrada de Cautana, presenta una ladera angosta orientada E-O, con desniveles relativos menores a 300 metros. El tramo inicial ubicado frente a la localidad de Quines, tiene características algo diferentes al resto debido a la presencia del plutón granítico de La Población. Aquí predomina las típicas morfologías de erosión graníticas y el ancho del frente puede alcanzar unos 2 km hasta la desembocadura de la quebrada de San Vicente. Continuando hacia Lafinur, el frente retoma su dirección N-S, perdiendo identidad en el tramo medio donde se hunde suavemente debajo de los sedimentos de la planicie loessoide.

2b Ladera oriental

La asimetría topográfica de la sierra de San Luis, hace que la suave ladera oriental represente el 97% de su superficie. La ladera tiene un ancho máximo, en su tramo medio, de 65 km y una pendiente general al este del 1%. Dentro de la ladera oriental se destacan cinco elementos geomorfológicos: las paleosuperficies de erosión, el complejo de valles fluviales, las áreas con morfologías graníticas, las áreas con morfologías volcánicas y las pampas de altura.

2b-1 Paleosuperficies de erosión

En algunos sectores de la ladera oriental de la sierra de San Luis se han preservado las antiguas superficies de erosión de las rocas del basamento cristalino. La superficie original ha quedado desmembrada por efectos de la tectónica posterior que ha roto los bloques. Estos sectores serranos tienen una suave pendiente general hacia el E y el ESE, con gradientes entre 0, 5% y 1, 3%.

González Díaz (1981) sugirió la formación de la peneplanicie a partir de un único y extenso ciclo de erosión fluvial que habría finalizado en el Terciario; sin embargo, no hay registros estratigráficos y/o datos termocronométricos que permitan establecer
con precisión su desarrollo. Sobre la base de la edad
de los emplazamientos de cuerpos intrusivos
plutónicos, la presencia de sedimentos lacustres
gondwánicos y secciones sísmicas de la cuenca
cretácica ubicadas al oeste de la sierra de San Luis,
Costa et al. (2000) sugirieron que la paleosuperficie
se habría desarrollado entre el Carbonífero y el
Triásico-Cretácico.

En un estudio regional de las Sierras Pampeanas,
Carignano et al. (1999) consideraron que el esque-
ma davisiano, como modelo para el desarrollo de las
paleosuperficies, no da una respuesta clara a las
características estratigráficas de dicha región y pro-
pusieron un nuevo modelo basado en la existencia
de dos superficies genéticamente diferentes
(etchplain y pedimentación) y una historia compleja
donde se habrían desarrollado varias superficies de
pediplanación diacrónicas, en épocas comprendidas
entre el Jurásico Superior y el Paleoceno.

2b-2 Complejo de valles fluviales

El término complejo se utiliza para abarcar tan-
to el área propia del valle como el de los sectores
interfluviales, incluidos los valles de origen fluvial y
de origen mixto (fluvio-eólico).

La ladera oriental de la sierra de San Luis es el
origen de los principales cursos fluviales de la pro-
vincia, tales como los ríos Conlara y Quinto. Esta
extensa superficie de suave inclinación actúa como
superficie colectora de las precipitaciones pluviales
y nivales, desarrollando sobre las rocas del basa-
mento un paisaje dominado por la presencia de va-
lles fluviales.

La típica asimetría del perfil serrano genera va-
lles profundos con interfluvios agudos en la ladera
oeste, como el caso de los ríos La Majada, Luján y
Quines, que contrasta con los valles fluviales de fon-
do plano, con escasa incisión e interfuvios romos
característicos de la ladera oriental.

Las condiciones de extrema aridez imperantes
durante el Pleistoceno-Holoceno, produjeron el re-
lleno parcial de los valles fluviales con sedimentos
eólicos, originando así geoformas de carácter mix-
to, con fondo plano.

Las rocas de los complejos igneo metamórficos y
las direcciones de fracturación N-S, NNE, NO y E-O,
controlan el desarrollo de las redes de drenaje. El sis-
tema de drenaje está bien jerarquizado, con diseños
predominantemente subdendríticos y en enrejado.

Si bien la ladera oriental tiene una pendiente
general hacia el este, el drenaje de las cuencas se
realiza en tres direcciones principales: hacia el nor-
te, como el caso de las cuencas de los ríos Luján,
Quines y Cabeza de Novillo; hacia el este hasta
encontrar el sistema colector del río Conlara, como
el caso de los ríos de Las Cañas y Luluara; y hacia el
sureste como el drenaje de los ríos Rosario y de La
Carpa. Los valles principales presentan escurre-
miento permanente, aunque sus aguas se infiltran
casi inmediatamente al alcanzar la planicie aluvial
pedemontana, excepto en el caso del río Conlara y
sus afluentes principales.

Una divisoria de drenaje hacia el norte y hacia
el sur está controlada por el relieve generado por el
Complejo Volcánico El Morro.

El desarrollo de los valles fluviales habría comen-
zado con el levantamiento de bloques durante la
Orogenia Andina. Durante el Pleistoceno Superior-
Holoceno, la aridez del clima produjo la fosilización
de los sistemas fluviales (Latrubesse y Ramonell,
1990) quedando registrado, en muchos sectores de la
ladera oriental, un relleno de características loessoides
en los antiguos valles fluviales. La reactivación de la
actividad fluvial en períodos climáticos más húmedos
produjo la erosión parcial de los rellenos loessoides y
la escorrentía retomó las direcciones de la antigua
red de drenaje, avanzando mediante disección linear
en forma de surcos y cárcavas.

La morfogénesis actual dentro en esta unidad
comprende principalmente la lenta incisión vertical
de las corrientes fluviales y la acción de la erosión
retrocedente, acompañada por el modelado de las
vertientes a través de la erosión laminar y la acción
de procesos gravitacionales como la reptación, caí-
da de rocas y deslizamientos.

2b-3 Paisaje granítico

Extensas superficies de la ladera oriental de la
sierra de San Luis tienen características morfológicas
asociadas a la presencia de cuerpos plutónicos
graníticos.

La menor resistencia a la erosión de las rocas
graníticas en relación con la roca de caja
metamórfica, genera que los cuerpos intrusivos ten-
gan menor relieve. Ello es particularmente notorio
en el cuerpo central del batolito de Las Chacras,
donde su contorno circular en planta, presenta bor-
des muy netos que contrastan en altura con la roca
encajante. Por otra parte, la menor permeabilidad
de las rocas graníticas se traduce en una menor
densidad del drenaje en relación con las rocas
metamórficas. Sin embargo, el rasgo más destaca-
do corresponde al desarrollo de las típicas
morfologías de erosión catafilar, las que en conjunto
con la presencia de depósitos loessoides, dan lugar a un paisaje de pequeñas pampas con afloramientos de rocas con formas redondeadas.

2b-4 Pampas de altura
Corresponden a sectores serranos con relieve suavemente ondulado cubiertos por mantos loessoides (con desniveles entre 5 m y 15 m) y muy escasa pendiente (0.5% a 2%). Los sedimentos eólicos habrían cubierto el ámbito serrano durante el Pleistoceno Superior-Holoceno, rellenando y nivelando la paleosuperficie labrada sobre las rocas del basamento cristalino.

Según Canalis (1993), estas unidades están constituidas por un material arena-limoso con participación variable de grava fina, que presentan espesores de 0, 5 a 1 m en las zonas altas y 2 a 3 m en las zonas más bajas. Las pampas de altura tienen una textura fotogeológica homogénea, que junto con el desarrollo de pastizales, determinan buenos contrastes con las rocas del basamento en las imágenes aéreas.

Una de las pampas mayores se halla entre Guanaco Pampa y San Martín.

2b-5 Morfologías volcánicas
Las morfologías volcánicas se ubican en el extremo suroccidental de la hoja e interrumpen la monotonia del suave paisaje que domina la ladera oriental con prominentes elevaciones de formas cónicas, entre las que se destacan los cerros Intihuasi, Redondo, Cerros Largos y del Rosario. Los aparatos volcánicos emergen de la superficie peneplanizada del basamento con diferencias altimétricas que en algunos casos alcanzan los 400 metros. Aunque no se han conservado totalmente las formas primarias del relieve volcánico, Sruoga et al. (1996) observaron que el grado de erosión de este relieve es mínimo, ya que se conservan los depósitos volcániclásticos subaéreos y de sinter sílico. Evidencias morfológicas directas de cráteres o calderas sólo se pueden observar en el cerro Tiporco.

Según González Díaz (1981), el desarrollo del relieve volcánico dio lugar a una importante divisoria de aguas regional, originándose una nueva red de drenaje con rumbo N-S que captó, total o parcialmente, las aguas del antiguo drenaje de la penillanura que tenía una dirección hacia el Este.

2b-6 Valles estructurales
En la zona de Bajo de Véliz se ha formado un valle estructural de 7 km en sentido NS y 1, 5 km de ancho. Esta depresión tectónica está limitada al este por la falla inversa Lafinur. En el valle se preservan las sedimentitas carboníferas de la Formación Bajo de Véliz.

3. Depresión del Conlara
Comprende el área ubicada entre las sierras de Comechingones y de San Luis. Se trata de una depresión tectónica marginada en su extremo oriental por fallas inversas del frente de Comechingones. El rasgo geomorfológico distintivo de la depresión es su relieve mayormente llano, producto de su relleno con sedimentos fluvi-eólicos, parcialmente expuestos en el área pedemontana occidental de Comechingones y en las barrancas del río Conlara, en el límite con la sierra de San Luis.

La depresión tiene una dirección N-S con un ancho medio de 25 km a la altura de Concarán. La zona más deprimida se encuentra hacia el río Conlara, donde limita con la suave ladera oriental de la sierra de San Luis. Hacia el frente serrano de la sierra de Comechingones, la unidad presenta gradientes variables entre 3% y 7%, siguiendo hacia el oeste con pendientes suaves que no superan el 1%. Hacia el sur, el relieve de la llanura está parcialmente interrumpido por la presencia de las sierras de Tilisarao, La Estanzuela y los piroclastos que rodean el cerro El Morro, originándose una muy suave pendiente secundaria hacia el norte con gradientes cercanos al 0.5%.

El origen de la depresión del Conlara está asociado al levantamiento de los frentes serranos y a la formación de cuencas estructurales. Su desarrollo morfogenético posterior estuvo marcado principalmente por procesos agradacionales de origen fluvial asociados a la denudación de las áreas serranas circundantes y a la depositación de potentes mantos eólicos (loess) que en conjunto nivelaron el relieve preexistente.

En concordancia con el estudio realizado por González Díaz (1981) en la depresión del Conlara se pueden diferenciar cuatro ambientes geomorfológicos principales: el piedemonte occidental de la sierra de Comechingones, la planicie loessoide, el valle del río Conlara y zona de influencia y las sierras aisladas del interior de la depresión.

3a Piedemonte occidental de la sierra de Comechingones
Esta unidad ha sido denominada planicie de agradación pedemontana por González Díaz (1981). Comprende una faja de ancho variable entre 2 y 7
km que se distribuye en forma paralela al frente serrano. Su rasgo geomorfológico más destacado corresponde a la presencia de varias generaciones de abanicos aluviales, reflejadas como diferentes niveles aterrazados y en menor proporción niveles erosivos. Hacia la zona distal pedemontana, la unidad desaparece en forma gradual dentro del ámbito de la planicie loessoide.

Los ríos que emergen de la escarpa occidental de la sierra se insumen rápidamente en la depresión debido a la elevada permeabilidad de los depósitos pedemontanos, constituidos por sedimentos de granulometría conglomerádica gruesa hasta arena fina.

Los abanicos aluviales presentan diferentes niveles y grados de disección. En el sector norte, Methol (1971) reconoció dos niveles de piedemonte aterrazados, el primero de ellos instalado en un escalamiento estructural y el segundo que relacionó con una superficie de erosión.

La coexistencia de geoformas agradacionales y erosivas es particularmente notoria a lo largo del tramo comprendido entre las localidades de San Javier y Carpintería, al este de la Falla El Molino, donde las superficies de erosión labradas sobre rocas del basamento cristalino suelen presentar una cubierta aluvio-coluvial de espesor variable. A pesar de su modificación por la erosión fluvial subsecuente, se destaca la continuidad topográfica de los interfluvios que permite la reconstrucción de una superficie de erosión sobre rocas de basamento, que a manera de islas, sobresalen en el sector intermedio del piedemonte y configuran una suerte de barrera para el desarrollo de las geoformas agradacionales recientes.

3b Planicie loessoide

La denominación corresponde a González Díaz (1981) quién describió una extensa área que comprende parte del sector pedemontano que margina por el este la sierra de San Luis.

La planicie loessoide es la unidad que le otorga el rasgo más distintivo a la depresión del Conlara. Se trata de un relieve característicamente llano, con suaves ondulaciones, constituido por sedimentos limo-loessoides. Este rasgo, particularmente notorio en el sector norte, cambia gradualmente en las zonas próximas a las sierras del extremo sur, donde el relieve adquiere características marcadamente onduladas y los sedimentos presentan mayores aportes de fracciones gruesas (guijas, gravas finas) de origen local.

Los sedimentos loéssicos y loessoides fueron depositados originalmente como mantos cólicos que copiaron las morfologías de los valles fluviales preexistentes, atenuando los desniveles relativos y generando así un paisaje suavemente ondulado, posteriormente retrabajado por acción de la escorrentía superficial.

La escasa pendiente, la buena aptitud de los suelos y las precipitaciones relativamente abundantes hacen de la planicie loessoide una de las principales zonas agrícola-ganaderas de la provincia de San Luis. Sin embargo, muchas veces se generan procesos de erosión fluvial y cólica por prácticas agrícolas desacertadas. La erosión hídrica es particularmente notoria en la zona proximal de la sierra de El Morro, donde las pendientes son algo mayores (1% - 4%) y han favorecido el desarrollo de sistemas de cárcavas de grandes dimensiones.

3c Valle del Conlara

El río Conlara representa la principal vía de agua de la zona. La cuenca de drenaje se extiende aproximadamente en dirección N-S, abarcando una superficie de alrededor de 2900 km²; en planta presenta una morfología irregular, con un mayor desarrollo en el sector norte donde alcanza un ancho máximo de 60 km, mientras que al sur de la localidad de Tilisarao el ancho máximo no supera los 15 kilómetros.

Desde su origen en la confluencia de los arroyos Luluara y Chuntusa, el río Conlara comienza su recorrido de 180 km dirigiéndose primero hacia el sur, siguiendo una probable línea de falla, hasta Paso Grande, para luego girar al este y, finalmente, hacia el norte. De esta manera, ingresa a la región de la depresión desde el área serrana y continúa con dirección al norte labrando un valle que limita la sierra de San Luis. Como tributarios se destacan los arroyos Los Molles y Piedras Bayas que confluyen en el embalse San Felipe. A partir de allí, el río Conlara entra en un amplio valle pasando por las localidades de Renca, Tilisarao, San Pablo, El Bañado, Concarán, Las Toscas, Santa Rosa, La Isla y Lomitas, donde gira al oeste para perderse en los bañados de Las Cañadas. Al norte de Santa Rosa de Conlara el río marca el límite interprovincial entre San Luis y Córdoba.

El valle del río Conlara conforma una unidad de morfología alargada con un canal activo con anchos variables entre 100 y 300 metros. El diseño de su curso es mayormente rectilíneo, aunque en algunos tramos desarrolla meandros con índices de sinuosi-
dad entre 1, 64 y 1, 91. El río fluye entre barrancas (cuyos desniveles máximos no superan en general los 10 m) lo cual ha sido interpretado como un episodio de rejuvenecimiento (González Díaz, 1981). Esto último es particularmente notorio entre las localidades de San Pablo y Renca, donde las barrancas más alejadas del curso actual están conformadas por sedimentos finos y conglomerados neógenos (formaciones Paso de Las Carretas y Río Quinto), mientras que las más cercanas están constituidas por sedimentos fluviales limo-arenosos, con lentes de gravas y depósitos finos lacustres de edad holocena.

El régimen hídrico es pluvio-estival y se caracteriza por la irregularidad de los caudales a lo largo del año. El río Conlara se insume al norte de la sierra de San Luis, dentro de la Depresión longitudinal central.

3d Sierras aisladas del interior de la depresión

Al sur de Tilisarao el ambiente de llanura de la depresión del Conlara es parcialmente interrumpido por la presencia de bloques elevados de basamento, como las sierras de Lomas del Carrizal, Tilisarao y La Estanzuela. El nombre se debe a González Díaz (1981) quien describió estas elevaciones como parte de una subunidad geomorfológica.

Las sierras tienen un rumbo NE a NNE y presentan el perfil asimétrico característico de las sierras mayores, preservándose en la pendiente oriental una superficie de denudación que muestra diverso grado de conservación y drenaje poco desarrollado. La ladera occidental está bastante degradada y es difícil reconocer morfologías primarias de fracturación (Costa y Morla, 1996). Los relieves relativos son bajos y sólo en la sierra de La Estanzuela alcanzan los 150 metros. El relieve está desmembrado por fallas de rumbo NNO.

4. Sierra de Comechingones

La sierra de Comechingones forma el relieve más prominente de la Hoja, con alturas de 1500 m snm en el sector sur, hasta 2600 m snm en su extremo norte. Se extiende en dirección N-S con un ancho máximo de unos 45 km a la latitud de Luyaba, disminuyendo a 15-20 km al sur de la localidad de Alpa Corral. La divisoria de aguas constituye el límite entre las provincias de San Luis y Córdoba.

La sierra presenta el clásico perfil asimétrico debido a la basculación que produjo la falla Comechingones. Otras fracturas de rumbo N-S y sistemas conjugados de rumbo NO y NE ejercen su influencia en las geoformas.

4a Ladera occidental

Corresponde a la escarpa de falla de la sierra de Comechingones, limitada al oeste por los depósitos del piedemonte. Presenta fuertes pendientes que superan el 35%. Canalis (1993) observó que tiene un alto grado de diseción fluvial, con amplios valles con forma de «v» entallados en las rocas ígneas metamórficas, de rumbo dominante E-O. Los cursos fluviales son de corto recorrido y de carácter efímero, insumiéndose a pocos metros de su desembocadura en el frente serrano; desarrollan un sistema de drenaje subdendrítico.

A lo largo de la ladera occidental las variaciones litológicas y estructurales del frente serrano permiten reconocer diferencias en las características del modelado fluvial. Al norte de Cortaderas, donde afloran rocas metamórficas, la ladera tiene valles fluviales profundos, con desniveles relativos de 30 a 50 m e interfluvios agudos, con un drenaje de diseño subdendrítico a subanguloso; suelen reconocerse los planos de fracturas subverticales expuestos por desprendimientos gravitacionales. El segmento Cortaderas-Papagayos está caracterizado por los afloramientos graníticos del batolito del Cerro Áspero; los valles fluviales tienen menores desniveles relativos y debido al fuerte control estructural los cursos son rectos, con dirección predominante ENE y en forma subordinada NE y NNO; la red de drenaje presenta en la mayoría de los casos un colector principal bien impuesto y rectilíneo, mientras que los tributarios tienen cuencas muy poco desarrolladas; en algunas de las quebradas más importantes el sistema fluvial está mejor desarrollado, expresándose bajo patrones subdendríticos a subangulares. Al sur de la localidad de Papagayos, donde afloran metamorfitas, sigue un tramo de menor altitud que se traduce en interfluvios sub-redondeados; el diseño de drenaje tiene un menor control estructural, y esto condiciona el predominio de patrones subdendríticos.

El límite oriental de la escarpa de falla no siempre coincide con la máxima altura, por ello la divisoria de aguas está desplazada más al este, generándose un sector donde las cabeceras de los cursos poseen escasa pendiente hacia el oeste, con un aspecto de paisaje denudado similar al de la ladera oriental de la sierra. El drenaje dendrítico observado en esta zona revela que la escarpa de falla no ha sido afectada por la activa erosión fluvial retrocedente que la caracteriza.
4b Ladera oriental

El paisaje denudado que predomina en el flanco oriental de la sierra de Comechingones es semejante al de la sierra de San Luis. Las principales diferencias están relacionadas con la mayor pendiente, lo que produce un mayor entallamiento de los cauces principales y la reducida presencia de depósitos loessoides. El control estructural de los cursos es siempre importante y generalmente enfatiza la expresión de determinadas fracturas en el relieve, como el lineamiento del río Guacha Corral. Los valles principales y sus afluentes se caracterizan por tramos cortos y rectos, con inflexiones de sus cursos cercanas al ángulo recto.

4b-1 Paleosuperficies de erosión.

Numerosos estudios han destacado como rasgo llamativo de las Sierras Pampeanas la presencia de antiguos niveles de erosión modelados sobre rocas de basamento (Brackebush, 1891; Gross, 1948; González Díaz, 1981; Cantú y Degiovanni, 1984; Rabassa et al., 1996; Carignano et al., 1999; Beltramone, 2006; entre otros). Estas paleosuperficies dan un paisaje de relieves con interfluvios romos que definen un mismo plano a escala regional. Las superficies de erosión antiguas se preservan mejor por encima de los 1400 m snm, inmediatamente al sur y al norte del batolito Cerro Áspero.

Estas áreas muestran una textura fotogeológica suave y diseños de drenaje dendríticos a subdendríticos que permiten diferenciarlas de su entorno. Muchos cursos fluviales se reconocen escasamente a través del fenómeno conocido como «sombra de drenaje». El relieve es suavemente ondulado con desniveles relativos entre 10 y 20 m y pendientes entre 5% y 8%. Las características de sus suelos permiten el desarrollo de actividades agrícolas.

La génesis de estas superficies se encuentra aún en discusión. Al modelo «davisiano» propuesto por González Díaz (1981) quien consideró una única superficie de erosión (peneplanicie) posteriormente desmembrada en bloques durante la Orogenia Andina, se oponen las ideas de Rovereto (1911, citado en Beltramone 2006), Rabassa et al. (1996) y Carignano et al. (1999), quienes sostuvieron la existencia de diferentes superficies de erosión. Según Carignano et al. (1999) las superficies de erosión se habrían formado en diferentes periodos geológicos, asociadas a procesos de etchplain y pediplanación. Beltramone (2006) señaló, sin embargo, que las superficies erosivas están margina das por escarpas de falla y que no se reconocen evidencias de pediplanación (por ejemplo engolamientos) descartando así un origen erosivo. Éstas y otras consideraciones como la falta de perfiles de meteorización, llevaron a este último autor a apoyar la hipótesis de una única superficie de erosión.

4b-2 Complejo de valles fluviales

El término complejo se utiliza para abarcar tanto el área propia del valle como el de los sectores interfluviales, incluidos los valles de origen fluvial y de origen mixto (fluvio-eólico).

El rasgo más notorio de la ladera oriental de la sierra de Comechingones está asociado a la acción de la erosión fluvial que ha labrado profundos valles en «v» controlados por la inclinación del bloque serrano, las fracturas y las variaciones litológicas. En muchos de estos valles se ha preservado el relleno loessoide, acumulado por el viento durante los períodos de aridez acaecidos en el Pleistoceno Superior y el Holoceno, dando origen así a valles mixtos con fondo plano. De allí el uso del término complejo para agrupar las geformas fluviales y mixtas (fluvio eólicas) y las zonas interfluviales.

Tal como lo han señalado Cantú y Degiovanni (1984), el modelado está condicionado por los tipos litológicos y el grado de metamorfismo; los esquistos dan origen a lomadas suaves y redondeadas mientras que los gneis, dependiendo de su estructura maciza o bandeadas, originan bochones al igual que en los relieves graníticos, o relieves crestiformes como consecuencia de la erosión diferencial. Los desniveles relativos entre el fondo de los valles y las áreas interfluviales varía comúnmente entre 20 y 50 m, y sólo en algunos sectores alcanzan valores cercanos a 100 metros. El drenaje superficial se agrupa en dos cuencas colectoras principales, correspondientes a los ríos Calamuchita (Tercero) y Chocancharava (Cuarto), con direcciones de escurremiento predominantes al este pero con variaciones hacia el SE y NE. El control estructural y litológico determina la predominancia de diseños de drenaje subdendríticos y subrectangulares. La influencia de la estructura interna del basamento metamórfico origina además, en algunos sectores, diseños del tipo trellis o enrejado.

4b-3 Paisaje granítico

El paisaje está asociado a los afloramientos de rocas graníticas de los batolitos de Achala y Cerro
Áspero. Los cuerpos ígneos, en general, tienen un relieve deprimido en relación con el entorno metamórfico a los que intruyen, debido al efecto de la erosión diferencial.

Los rasgos geomórficos varían de acuerdo a las composiciones de las rocas graníticas, al diaclásamiento y su posición en el relieve. Cantú y Degiovanni (1984) destacan el desarrollo de morfologías típicas como bochas, tafoni, planicies con alveolos, superficies cubiertas con rodados de 1 a 3 cm de diámetro (maicillo) y crestas o cuchillas de cuarzo o sílice.

Dentro del batolito del Cerro Áspero el sistema de drenaje está fuertemente controlado por fracturas con direcciones predominantes NNO, ONO y N-S que generaron diseños subdendríticos y subangulares.

4b-4 Pampas de altura
La mayor disección fluvial de la ladera oriental de la sierra de Comechingones ha contribuido a la escasa preservación de las formas de relieve suavemente onduladas conocidas como pampas de altura. Dentro del área de estudio estas geofomas se encuentran en la zona de Vacanto de Calamuchita y en algunos sectores asociados a las paleosuperficies vecinas al batolito de Alpa Corral-Cerro Áspero.

En estos lugares las imágenes satelitales muestran texturas lisas y los cursos fluviales se reconocen débilmente a través del fenómeno conocido como «sombra de drenaje». Las características de sus suelos permiten un mejor desarrollo de las actividades agrícolas.

6. Planicie pedemontana
Se extiende al sur del embalse Río Tercero y está contenida entre la sierra de Comechingones por el oeste y las sierras de Los Cóndores y de Las Peñas por el este. La denominación está en concordancia con las consideraciones geomorfológicas realizadas por Grumelli y Cantú (2006) para un área ubicada al suroeste de la ciudad de Río Cuarto.

Dentro del ambiente de la planicie pedemontana se pueden diferenciar dos elementos principales: las lomadas periserranas y las fajas fluviales.

6a Lomadas periserranas
Comprende parte de la denominada Faja eólica ondulada periserrana por Cantú y Degiovanni (1984), quienes describieron la presencia de lomas alargadas según la pendiente regional. Su génesis estaría vinculada con la depositación de secuencias finas de abanicos aluviales, cubiertos posteriormente por depósitos loessoides con granulometría variable entre arena fina y limos.

Se trata de llanuras moderada a fuertemente onduladas (con pendientes de hasta 12 %) que bordean la sierra de Comechingones. El relieve responde a la presencia de bloques de basement cercanos a la superficie, a la construcción y posterior disección de bajadas pedemontanas y a la cubierta loessoid de cuaternaria.

Aisladamente y apenas cubiertos, se reconocen relieves denudativos próximos a las sierras; son superficies de basement de suave pendiente, con calcretas en su techo, que se interpretan como pedimentos y relieves residuales. Las bajadas falladas y dissectadas constituyen una sucesión de lomadas fundamentalmente compuestas por secuencias de abanicos pleistocenos, separadas por amplios valles con relleno holoceno, que fueron finalmente cubiertos por depósitos loessoides. A mayor distancia de las sierras domina el loess removilizado, con aluvio subordinado.

El grado de disección de la unidad es variable; así, el sector pedemontano oriental de la sierra de Comechingones está surcado por numerosos cursos de carácter permanente que desarrollaron fajas fluviales importantes, mientras que en la periferia de las sierras de Los Cóndores y Las Peñas desaguan cursos temporarios de poco porte. Por ello, la unidad presenta rasgos de erosión hídrica que varían desde laminar hasta grandes sistemas de cárcavas ramificadas.

La zona de lomadas presenta un gradiente regional al SE del 0.5%. Las laderas tienen inclinacio-
nes variables entre 1% y 3% y los desniveles relativos máximos no superan los 10 m en general, con valores inferiores a los 5 m en el sector sur.

6b Fajas fluviales pedemontanas

La unidad comprende formas típicas de sistemas fluviales implantados en zonas de llanura tales como paleocauces, meandros abandonados, terrazas, albardones y derrames, entre otros. Estos rasgos fueron descritos por Cantú y Degiovanni (1984) como parte de dos asociaciones geomorfológicas principales denominadas Derrames del Río Tercero y Derrames de los ríos Cuarto y Quinto.

En relación con el sistema fluvial del río Tercero, se destaca la faja fluvial asociada al río de los Sauces. Muchos de los afluentes de este río tienen una inflexión en su recorrido al llegar al sector pedemontano de aproximadamente 90°, contorneando el borde serrano, situación que sugiere un control tectónico como ya ha sido notado por Cantú y Degiovanni (1984).

Hacia el sur se destaca el arroyo de Las Barrancas, que emerge del frente serrano con morfología rectilínea por unos 7 km en dirección SE, fuertemente encajado en los depósitos cenozoicos pedemontanos, para luego torcer hacia el SSE donde en un tramo de unos 5 km desarrolla meandros con amplitudes crecientes. Antes de su desembocadura en el río Chocancharava, el curso principal adquiere una morfología rectilínea con dirección marcada hacia el sur. En este último tramo la disminución de la pendiente del curso ha originado el abanico aluvial del río Seco o de Las Barrancas.

Más al sur hay otras fajas fluviales con dirección SE, correspondientes al sistema del río Chocancharava.

7. Sierra Chica

La sierra Chica tiene los mismos rasgos geomórficos descritos para los otros bloques serranos. Puede observarse el típico perfil asimétrico, con la escarpa de falla en la ladera occidental y una parte de la ladera oriental más tendida.

5. HISTORIA GEOLÓGICA

Las sierras de San Luis y Comechingones son parte del terreno Sierras Pampeanas. Constituyen bloques de basamento formados por rocas metamórficas y granitoides paleozoicos separados por cuencas sedimentarias cenozoicas. Dentro de las rocas de basamento se definen una serie de dominios litológicos y estructurales de orientación N-S, limitados por importantes zonas de cizalla dúctil-frágiles. Estos dominios han sido interpretados como terrenos que se acentuaron sobre el margen convergente al oeste de cráton del Río de la Plata (Ramos, 1988; Demange et al., 1993; Escayola et al., 1996; Kraemer et al., 1995, 1996). Estudios geocronológicos junto con observaciones de campo (Camacho e Ireland, 1997) indicaron la presencia de dos dominios principales: uno cámbico y otro más joven cámbico-ordovícico, que comparten una historia tectónica común hasta el DeVónico inferior.

Las rocas más antiguas de la región forman una secuencia tectónicamente engrosada de gneises pelíticos y psamíticos, con algunas fajas discontinuas de mármoles (Complejo Metamórfico Comechingones), en las que no se han podido reconocer las estructuras sedimentarias originales, tales como estratificación. Estos metasedimentos han sido interpretados como depósitos de un margen pasivo desarrollado durante el rifting intracontinental y posterior separación de Laurentia y Gondwana en tiempos del Cámbico inferior, alrededor de los 540 Ma (Dalziel et al., 1994). Dataciones U-Pb (Lyons et al., 1997; Camacho e Ireland, 1997) aportaron edades entre 500–600 Ma. Rocas similares y edades comparables indican que los metasedimentos pueden ser correlacionados con la Formación Puncoviscana aflorante al norte de Sierras Pampeanas, como lo postularon Willner y Miller (1986).

Luego de la intrusión de diques máficos toleíticos, los sedimentos fueron deformados en niveles intermedios de la corteza por un evento compresivo D1 y metamorfizados hasta alcanzar facies de anfibolita superior y, localmente, facies de granulitas. Dataciones U-Pb en bordes de circcón y monacita formados durante el evento metamórfico (M1) en Córdoba, dieron una edad de 530 Ma (Lyons et al., 1997; Camacho e Ireland, 1997). Este evento incluye los dominios D1 y D2 de Dalla Salda (1987) y ha sido denominado Ciclo orogénico Pampeano (Aceñolaza y Toselli, 1976) o Ciclo Pampeano (Dalla Salda, 1987; Toselli et al., 1992). La deformación fue interpretada como la primera en una serie de eventos deformacionales asociados con la convergencia del margen oeste de Gondwana, formado luego de la amalgamación del supercontinente (Dalziel et al., 1994). En los estadios finales del Ciclo Pampeano se produjo un magmatismo felsico representado por numerosas intrusiones.
subconcordantes de cuerpos tonalíticos y granodioríticos (Complejo Metamórfico Monte Guazú de Sims et al., 1997).

Durante el Ordovícico, el cierre del Océano Iapetus y la colisión de Precordillera con el margen de Gondwana (Dalla Salda et al., 1992, 1996; Dalziel et al., 1996) dieron como resultado la amalgamación del retroarco ordovícico (complexes metamórficos Conlara y Pringles) con el basamento cámbrico; este evento deformacional, metamórfico y magmático es conocido como Ciclo Orogénico Famatiniano (Aceñolaza y Toselli, 1976), Orógeno Famatiniano (Dalla Salda et al., 1992) o Ciclo Famatiniano (Dalla Salda, 1987). Durante el mismo se desarrolló una deformación compresiva D1 (en rocas ordovícicas) y D2 (en rocas cárnicas) mayormente en facies de anfibolitas y localmente en facies de granulitas, que fue acompañada por el desarrollo a escala kilométrica de zonas de cizalla frágil dúctiles con vergencia al oeste. Aunque las estructuras primarias están obliteradas, es posible reconocer capasgradadas y secuencias turbidíticas originales en algunos lugares dentro de los complejos metamórficos Pringles y Conlara. Algunos cuerpos mafico-ultramáficos (Grupo Las Águilas, Sims et al., 1997) que intruyeron los sedimentos, fueron también afectados por la deformación y serían responsables de una significativa fuente de calor derivada del manto, que contribuyó a las condiciones metamórficas de alta temperatura. En las rocas de basamento cámbrico, las fábricas tempranas D1 fueron plegadas y localmente recristalizadas para formar una nueva foliación (S2). El episodio de alto metamorfismo durante el Ciclo Famatiniano fue seguido por un tectonismo extensional, bajo condiciones de facies de esquistos verdes, acompañado por el emplazamiento de granitos tipo S y pegmatitas. El tectonismo extensional y el emplazamiento granítico estuvo restringido a fajas discretas produciendo una retrogradación penetrativa de las paragénesis de alto grado. La Formación San Luis, de bajo grado metamórfico, fue depositada probablemente durante esta etapa extensional. La actividad ignea culminó a 470 Ma con el emplazamiento de intrusivos tonalíticos y granodioríticos a lo largo del Camino de la Sierra de Comechingones. El Ciclo Achaliano corresponde probablemente a la Fase Precordilleránica (Astini, 1996) en la Precordillera al oeste de las Sierras Pampeanas, donde se lo relaciona con la amalgamación del Terreno Chilenia.

Luego de la peneplanización, durante el Carbonífero y el Pérmico, la región pampeana habría estado cubierta por una calota glacial como consecuencia de la etapa fría que afectó a Gondwana. La retracción glacial de la calota misisipiana desarrolló glaciares politermales y lengüas de descarga con base húmeda que avanzaron rápidamente labrando profundos paleovalles donde se depositaron los sedimentos (Astini, 2009). La Formación Bajo de Véliz, es uno de los registros que conserva la historia de la expansión de los antiguos paleovalles del Atlántico Sur, produjo una extensión de algunas fallas de basamento y la depositación de sedimentos clásticos continentales en hemigrabens, acompañados por un magmatismo...

Ya en el Cenozoico, la sierra de San Luis experimentó un domamiento producido por extrusiones de lavas principalmente andesíticas que formaron aparatos volcánicos y extensos conos piroclásticos. El vulcanismo, datado entre 9,5 y 1,9 Ma, es relacionado con una fase extensional producto de la subducción de bajo ángulo de la Placa de Nazca en el Mioceno Medio (Kay y Gordillo, 1994; Smalley et al., 1993).

La finalización del magmatismo está indicada por el comienzo de una compresión este-oeste que dio como resultado la inversión de las cuencas cretáceas (Schmidt et al., 1995) y la exhumación de bloques de basamento que dieron lugar a sierras de orientación N-S separadas por valles intermontanos. Las sierras están limitadas por escarpas generadas por fallas inversas de moderado a alto ángulo, muchas de las cuales muestran una larga historia de repetidas reactivaciones. Costa (1996) interpretó que los movimientos más significativos en la región habrían ocurrido durante el Plioceno-Pleistoceno, continuando su actividad durante el Cuaternario.

6. RECURSOS MINERALES

Metalogénesis

La metalogénesis de la región está estrechamente relacionada con cinco ciclos tectomagmáticos que generaron diferentes estilos de yacimientos y asociaciones minerales.

Durante el Ciclo Pampeano cámbrico, los complejos metamórficos alcanzaron un grado medio a alto y fueron deformados e intruidos por granitoides del tipo I y S. Los depósitos minerales generados durante este ciclo corresponden a mineralizaciones de W, Cu-Fe y Pb-Zn -que estarían asociados a precipitación en ambientes exhalativos submarinos y a cuerpos de cromitas podiformes alojadas en cuerpos ultrabásicos metamorfizados.

Durante el Ordovícico Inferior, las sierras de San Luis y Córdoba fueron afectadas por metamorfismo y deformación compresiva a los que siguió una tectónica extensional con emplazamiento de granitoides y metamorfismo retrógrado, eventos que se relacionan con el Ciclo Famatiniano. La fase metalogenética relacionada espacial y temporalmente con la deformación extensional, bien desarrollada en la sierra de San Luis, produjo el emplazamiento de grandes volúmenes de granitos y pegmatitas a los que se asocian importantes depósitos de Li, Be, Nb, Ta, Sn y minerales industriales. Algunas mineralizaciones de W de la sierra de San Luis pueden haberse formado durante esta fase.

Durante el Devónico-Carbonífero dominaron intrusiones de granitos en un marco tectónico compresivo acompañado de plegamiento y cizallamiento, eventos conocidos con el nombre de Ciclo Achaliano (Sims et al., 1997). Este ciclo está caracterizado por diversos depósitos de Au, W, Bi, Ag, Pb y Cu, y un segundo período pegmatítico con mineralizaciones de Be, Li, Nb, Ta, U, REE, Th y F. Dataciones 40Ar/39Ar sobre muscovita hidrotermal asociada a venas con Au±Cu, W y Ag-Pb-Zn, sugieren que las mineralizaciones ocurrieron entre 390 y 360 Ma. Sobre esta base y las dataciones U-Pb sobre circones, este período metalogénico habría comenzado durante el magmatismo devónico, entre 403 y 382 Ma (Camacho e Ireland, 1997) y puede haber continuado al menos 25 Ma después del emplazamiento granítico. Malvicini et al. (1991) propusieron que algunos depósitos de W, Pb, Zn y Cu que las sierras de San Luis estarían vinculados a grani- tos carboníferos. También es probable que las vetas de cuarzo con mineralizaciones de Pb-Ag-Zn del distrito Las Aguadas, al norte de la sierra de San Luis, se hayan formado durante el Ciclo Achaliano (Malvicini et al., 1991).

Más tarde, durante el evento tectónico térmico extensional del Rifting Cretácico, se desarrollaron cuencas sedimentarias acompañadas por un vulcanismo basáltico. A este evento se asocian los depósitos de fluorita de la sierra de Comechingones (Galindo et al., 1996).

Por último, la Tectónica Andina neógena desarrolló un vulcanismo calcoalcalino andésítico a traquianesítico al que se asocian las mineralizaciones de Au, Cu (Ag-Pb-Zn) del distrito La Carolina (inmediatamente al oeste del área de estudio). El vulcanismo mioceno-plioceno y sus mineralizaciones, representan el último ciclo metalogénico de importancia; sus características geológicas, geoquímicas y de alteración hidrotermal indican yacimientos formados en los niveles superiores de sistemas de baja sulfuración epitermal.

Los yacimientos y manifestaciones minerales de la Hoja son listados en el cuadro 3. Los nombres y ubicaciones se obtuvieron de bases de datos de las
direcciones de minería de las provincias de Córdoba y San Luis. Los puntos se encuentran ordenados por su latitud, de norte a sur.

6.1 DEPÓSITOS DE MINERALES METALÍFEROS

Oro- Plata- Cobre

Distritos La Carolina, Cañada Honda

Los yacimientos de La Carolina (en el extremo SO de la hoja) están relacionados con el Complejo Volcánico El Morro, de edad miocena. Se trata de depósitos epitermales de baja sulfuración con oro, plata y sulfuros de metales base (Urbina, 2005). Los yacimientos están formados por una combinación compleja de brechas hidrotermales, venillas, stockworks y zonas diseminadas. Algunas vetas, conocidas como La Carolina, La Estancia y La Luisa, son rellenos de fracturas del basamento metamórfico.

En el distrito Cañada Honda las mineralizaciones se distribuyen alrededor del pórfido cuprífero, rico en oro, denominado Diente Verde (66°00’00’’O, 32°50’10’’S), donde se desarrolló un stockworks con orientación ONO, NE y NO. La alteración hidrotermal y las mineralizaciones están dispuestas siguiendo un patrón concéntrico respecto al intrusivo central (Urbina, 2005). Se destacan los yacimientos La Rica (Malvicini y Urbina, 1994), La Reynela (Oggier et al., 2000), La Rubia, Los Quirquinchos (Oggier y Urbina, 2001) y La Carpa. Las mineralizaciones vetiformes epitermales están hospedadas tanto en el basamento metamórfico como en las rocas volcánicas.

Cobre–Hierro y Plomo–Zinc

Cu-Fe (Zn, Au) en anfibolitas

Un grupo de yacimientos de cobre y otros metales (Fe, Ti, Zn y Au) asociados a rocas metabásicas (Mutti y Di Marco, 1999), están escasamente representados en el ámbito de la Hoja.

La mina Estrella Gaucha (o La Estrella) presenta una mena de cobre que se vincula con un banco de anfibolita con dirección de buzamiento 60/45, con una potencia variable entre 3 y 30 m y una longitude de alrededor de 100 m (Mutti y Di Marco, 1999); intercalada con filones graníticos aplopegmatíticos del complejo metamórfico. La anfibolita portadora de la mineralización está constituida por homblanda, labradorita-biytownita, biotita y epidoto junto con cantidades menores de magnetita, ilmenita, hematita y cuarzo.

La mineralización se dispone como una faja irregular en el contacto anfibolita-pegmatita, sobre una corrida cercana a 50 m y con potencias entre 20 y 30 cm; observada hasta la profundidad alcanzada por los destapes (Di Marco y Mutti, 1992 y 1995), pero los estudios geofísicos efectuados por Bianchi (1974a) permitieron inferir su presencia a profundidades mayores. La mena se presenta diseminada en la ganga y roca de caja, a veces agrupada en nódulos y otras como relleno de fracturas. El depósito registra una zonación concéntrica definida por fajas silicificadas, epidotizadas, albitizadas, cloritizadas y argilitizadas, que en su conjunto desarrollan una potencia variable entre 0, 5 y 2 metros.

Los minerales primarios están constituidos por magnetita diseminada en la ganga cuarzosa, en cristales euhedrales de hasta 2 mm con exsoluciones de hematita e ilmenita según planos de clivaje; calcopirita en cristales subhedral de hasta 1 mm como reemplazo de óxidos o diseminada en la ganga; ilmenita bajo la forma de exsoluciones laminares y/o en disco en hematita y magnetita; hematita exsuelta en magnetita o diseminada en pequeños individuos en la ganga; pirita en pequeños cristales idiomorfos en el cuarzo y muy escaso oro generalmente como laminillas inferiores a 10 μm incluidas en magnetita y/o pirita. Los minera-
les secundarios son calcosina, covelina, malaquita y crisocola, formados a expensas de la calcopirita y limonitas de hierro; además se presenta cuprita en cristales cúbicos idiomorfos y cobre nativo con pequeñas formas arborescentes (Bianchi, 1974a).

Los minerales de ganga están representados principalmente por cuarzo de grano fino a medio y parcialmente recristalizado junto con cantidades subordinadas y variables de biotita, epidoto, albita, cloritas y arcillas.

Las investigaciones llevadas a cabo por diversos autores sobre la génesis de estos yacimientos de Cu-Fe (Zn-Au) han permitido, por un lado, pensar en un modelo de hidrotermalismo de fondo submarino en rocas basálticas vinculadas a zonas de riftimg durante el Neoproterozoico, con posterior removilización por deformación, metamorfismo y magmatismo asociados al Ciclo Pampeano cámbrico (Mutti y Di Marco, 1998); por otro lado, Lyons et al. (1997) relacionaron la mineralización con la circulación de fluidos hidrotermales de alta temperatura vinculados con cuerpos intrusivos próximos, de probable edad devónica.

La información de estos cuerpos mineralizados es escasa y parcializada, en particular en cuanto a las reservas y producciones. Según Cayo (1951), la mina Tauro presenta valores en Cu entre 0, 12 y 18, 40% con una ley media del 7, 23%, la mina Tacurú tiene valores entre 0, 50% y 13, 50% de cobre, con una ley media de 5, 50%. En el caso de la mina Tío los valores de Cu están entre 0, 86 y 21, 52%, con una media de 5, 56%. Los análisis efectuados por Di Marco y Mutti (1991, 1995 y datos no publicados) sobre muestras de la mina Tío, dieron valores medios de 2, 5% en Cu; 4% en Fe; 1.360 ppm en Zn; 0, 3 ppm en Au; 3, 2 ppm en Ag; 460 ppm en Co; 13 ppm en Mo; 35 ppm en Se; 23 ppm en Pb; 4, 1 ppm en U y 250 ppm en Ba. En el yacimiento Estrella Gaucha las determinaciones realizadas por los mismos autores arrojaron, para la mena oxidada, valores medios de 5, 70% en Cu; 9% en Fe; 174 ppm en Zn; 1, 5 ppm en Au; 4, 5 ppm en Ag; 3, 5 ppm en As; 5 ppm en Bi y 400 ppm en Ba. Además, para este último yacimiento Bianchi (1974a) citó valores en Cu de hasta 12% para la faja mineralizada. Con respecto a la producción, sólo se cuenta con datos aportados por Marquez y Casanello (1948) quienes determinaron la presencia de 2000 t de mineral de cobre con una ley superior al 3% en cancha de la mina Tacurú.

La actividad extractiva de mineral de cobre en los yacimientos de mayor importancia ha sido desarrollada mediante métodos subterráneos a partir de la realización de piques, chiflones y galerías; mientras que en los depósitos de escaso potencial económico aparente y/o manifestaciones sólo se han ejecutado algunas labores de desvasta que permitieron la extracción de mineral, tales como pozos, rajos, calicas y trincheras. Las labores más extendidas corresponden a las de la mina Tío, a partir del desarrollo de un sistema de piques, chiflones y galerías que alcanzan los 33 m de profundidad y que totalizan en su conjunto unos 200 m de laboreo. En la mina Tauro las labores subterráneas llegan hasta los 18 m de profundidad, partiendo de dos piques principales junto con un chiflón que comunican con galerías y cortavetas de escaso desarrollo (Angelelli, 1950 y 1984). En cuanto a la mina Tacurú, el laboreo alcanza una profundidad de 18 m, con dos piques de entrada que llegan hasta los 10 m, unidos por una galería de 31 m de longitud de la cual parte un chiflón de igual longitud. Respecto a las minas Rita y Estrella Gaucha, las labores sólo consisten en destapes superficiales, calicas y trincheras que no superan los 5 m de profundidad. Cabe mencionar finalmente que en el distrito Calamuchita se instaló en cercanías de la localidad de Caltano una pequeña planta de beneficio para los minerales provenientes de los yacimientos más próximos, que estuvo en funcionamiento desde fines del siglo XIX hasta principios del siglo XX.

Cu (Au) en calizas dolomíticas.

Las manifestaciones y/o depósitos de cobre (oro) en calizas identificados en las sierras de Córdoba, se localizan en los distritos Cañada de Álvarez y Atos Pampa, sierra de Comechingones (Mutti y Di Marco, 1999). La mineralización está vinculada con bancos de mármol dolomítico que se presentan en las canteras Achalay, Oñate y Maero del distrito Cañada de Álvarez y en la cantera Cerro Azul de Atos Pampa.

Las manifestaciones cupríferas de Cañada de Álvarez tienen por centro geográfico la localidad de La Calera que dista 18 km al noroeste de la ciudad de Berrotarán, mientras que a las manifestaciones de Cerro Azul se llega a partir del camino que une la ciudad de Santa Rosa de Calamuchita con Yacanto de Calamuchita, a unos 10 km de esta última localidad.

La primera mención bibliográfica de la existencia de sulfuros de cobre en la región de Cañada de Álvarez corresponde a Angelelli et al. (1970). Con posterioridad, Brodkorb et al. (1981) presentaron...
una descripción mineralógica detallada de estas manifestaciones y efectuaron su primera interpretación genética. Más tarde Mutti et al. (1997 y 1998) correlacionaron los depósitos de Cañada de Álvarez y Atos Pampa con otros yacimientos de metales base de posible edad neoproterozoica, aflorantes en las sierras de Córdoba.

El distrito Cañada de Álvarez está integrado por las minas Oñate, Maero, Achalay, Las Martas, Palacios y Hernández. La mineralización de cobre se alberga en un potente paquete de mármol dolomítico, muy uniforme, que tiene un desarrollo de 3500 m y un ancho máximo de 600 m, con dirección NO. La mineralización de cobre aparece siempre en la parte superior del paquete de mármol dolomítico verde limón y asociada a la variedad gris. La capa de sulfuros tiene un espesor variable entre algunos milímetros y 6 cm, presentándose con repetición de hasta cuatro ciclos y con alternancia de finos bancos calcáreos, alcanzando el conjunto un espesor entre 5 y 50 centímetros. La mineralogía está constituida por calcosina rómbica acompañada con escasas calcopirita, bornita, neodigenita, covelina, wittichenita, plata y oro. La calcosina presenta textura kamacítica ocupando los espacios interminerales de la dolomita o incluida en el carbonato y/o en serpentina. Los restantes minerales se ubican como inclusiones redondeadas menores a 20 μm, con excepción del oro que rara vez supera los 6 micrones. Entre los minerales oxidados de cobre se destacan malachita, pseudomalachita, carnotta y dióptasa asociados a las capas de sulfuros y a diaclasas, además de limonita que ocupa los clivajes rómicos en la calcosina y en los bordes de los gramos. Como minerales de gansa se encuentran dolomita, calcita, diópsido, forsterita, flogopita, tremolita y serpentina (Mutti y Di Marco, 1999).

En el distrito Atos Pampa, cantera Cerro Azul, la roca portadora es un banco de mármol de grano mediano a fino que se extiende aproximadamente unos 250 m en dirección 340°, con un espesor de 70 m, intercalado con los gneises y anfibolitas del Complejo Comechingones. Los mármoles contienen filones, venas y diseminados cuarzo-turmalínicos con epidoto formando un skarn. Los minerales de cobre forman un pseudoestrato aproximadamente continuo de unos 20 cm de espesor que se asocia con el nivel de mármol gris ubicado hacia el techo de los bancos y deben un depósito integrado por finas capas calcáreas con sulfuros diseminados, que a veces adquieren aspecto crenulado, alternantes con bandas de calcáreas gris a blancos. Cada unidad portadora de cobre rara vez supera los 8 mm de espesor y su repetición puede alcanzar hasta 5 ciclos. Los niveles pseudoestratificados portadores de sulfuros de cobre en las calizas cristalinas no presentan elementos diagnósticos que puedan relacionarlos con una actividad hidrotermal, sin embargo la participación de epidoto, turmalina, cuarzo, feldespato y micas en sectores asociados con fracturación y en el contacto gneis-mármol magnesiano y anfibolita-mármol magnesiano, se atribuyen a la circulación de fluidos hidrotermales póstumos con la consiguiente formación de un skarn. Los minerales presentes en los depósitos son principalmente calcosina rómbica intragranular, acompañada por neodigenita y covelina en textura kamacítica y por magnetita e ilmenita en agregados menores a 5 mm que se localizan también en individuos aislados diseminados. Con frecuencia, aunque con tamaño menor a 5 μm, se observa pirrotina ocupando posiciones intergranulares con escasas chispas de oro; además hay limonita, malagaquita y azurita junto con una abundante participación de yeso. Los minerales de gansa son calcita, dolomita, forsterita, diópsido, serpentina, flogopita, epidoto e iddingsita. Las manifestaciones del cerro Azul se correlacionan desde un punto de vista mineralógico, textural, litológico, estructural y geoquímico con las manifestaciones cupríferas del distrito Cañada de Álvarez (Mutti y Di Marco, 1999).

Los datos existentes sólo indican una actividad minera esporádica, restringida a la explotación de rocas carbonáticas en la mina Fátima (fuera del ámbito de la hoja), con registros de extracciones durante la década de 1950 que muestran producciones de 5 t de mineral con una ley de Cu de 39%, 15 t de mineral con una ley de Cu de 22% y 50 t de mineral de baja ley (Dawson, 1965). En las canteras de mármol de los restantes distritos no existen datos, pero los análisis químicos en roca total indican concentraciones de cobre variables entre 0, 01 y 2, 5%, no existiendo hasta el presente una evaluación de reservas.

La explotación se vincula con la extracción de mármoles mediante banqueo y desarrollo de canteras, separándose las rocas con algún contenido metálico en pequeñas pilas a través de operaciones manuales.

Plomo, Zinc, Cobre, Plata y Vanadio

Distrito Las Aguadas

El distrito Las Aguadas se localiza en el sector noreste de la sierra de San Luis, abarcando un área
aproximada de 600 km². Está conformado por los yacimientos La Tinaja, Farallón Negro, Los Cerrillos, San Antonio, San Jorge, Las Cienaguitas, El Jarillar, Los Alanices, San Fernando, La Sala, La Angelita, La Margot, Pozo de La Chica, Las Perdices, La Fortuna, La Euca, La Nelly, Las Piedras Bayas y El Tala.

Los yacimientos del distrito Las Aguadas consisten en vetas de cuarzo mesotermales, portadoras de galena argentífera, pirita y calcopirita, emplazadas en los esquistos del Complejo Metamórfico Conlara. Las vetas se alojan en fracturas verticales con rumbos 330°, 300° y 270°, que corresponden a fallas transcurrentes conjugadas. Las vetas han sufrido múltiples fracturaciones postminerales, puestas de manifiesto por la cataclasis del cuarzo evidenciada por extinción ondulosa y textura de mortero. Además las texturas y paragénesis mineral indican sucesivos pulsos asociados a las reactivaciones. La mineralización se encuentra en brechas con turmalina, cuarzo y limonitas. Los sulfuros primarios son esfalerita, galena, calcopirita, marcasita y los minerales supergénicos son bornita, calcosina, digenita, covelina, anglesita, cerusita, malaquita, azurita, calcita, siderita?, hematita, goethita, manganita?, vanadinita y cuarzo supergénico. Los yacimientos se habrían desarrollado durante el Paleozoico Superior, vinculados a granitoides achatianos (Ulacco, 1999).

Las estimaciones de reservas de algunos depósitos del distrito han sido realizadas para el vanadio de la mina La Estela (Alessi, 1957) y para el plomo del yacimiento Graciel Elsa (Magnou, 1968). El resto de las manifestaciones carecen de antecedentes y no muestran producción debido a que están inactivas desde mediados del siglo XX.

Las tareas de explotación realizadas en las principales vetas del distrito se han desarrollado a través de piques, socavones y galerías, como así también de laboreos pequeñas a cielo abierto (cortes, destapes, rajos, etc.). Las labores que se observan actualmente, en general no son accesibles por su mal estado y las instalaciones están desmanteladas.

Distrito Piedra Blanca

El distrito Piedra Blanca comprende las minas del faldeo oriental de la Sierra de Comechingones, ubicadas al suroeste de Río de los Sauces y en los alrededores de localidades de Las Albahacas, Piedras Blancas y Las Tapias. Comprende las minas Humberto II, La Unión, Carpa, Clelia y Santa Ana. La mina La Unión se encuentra a unos 1000 m al norte del kilómetro 5 del camino que une Piedras Blancas con Las Albahacas; Humberto II se ubica en el cerro Montero, al suroeste de Piedras Blancas, y Clelia está situada a unos 8 km al oeste de Las Albahacas.

Los depósitos están asociados a sistemas de vetas de rumbo 310° a 270° que buzan entre 40° y 85° al NO, con excepción de la mina Clelia cuya veta posee una dirección NE. Dominan las vetas de relleno de falla con corridas menores a 200 m y potencias variables entre pocos centímetros y 0, 40 metros. En la mina Clelia, la veta corta un banco de mármol al que mineraliza, aumentando la potencia explotable. Los minerales primarios están constituidos esencialmente por galena, calcopirita y pirita de grano mediano a fino con texturas macizas a desmenuzadas. Los minerales secundarios y de oxidación son abundante limonita, hematita y malaquita. El cuarzo es el principal mineral de ganga, destacándose además la participación de carbonatos en la mina Clelia. Las salbandas están cloritizadas y argilitizadas y alcanzan 0, 20 m de espesor, además hay una silicificación en las cajas metamórficas.

Según Lapidus y Fernández Lima (1953) los yacimientos tendrían un origen vinculado con fluidos hidrotermales derivados de granitoides devónicos, relacionados con el relleno de fracturas y reemplazo selectivo en calizas (este último proceso sólo en la mina Clelia).

Los registros en el padrón minero de las minas del distrito Piedra Blanca fueron efectuados entre los años 1922 y 1936. Los antecedentes sobre explotaciones son escasos, así como también los laboreos mineros realizados, consistentes en destapes y ocasionales galerías, actualmente derrumbadas.

Uranio

Mina La Estela

El yacimiento La Estela (64°56’5.81”O, 32°35’8.15”S) se ubica sobre el faldeo occidental
de la sierra de Comechingones, en la margen izquierda del río Seco. La mina La Marquesa, un antiguo pedimento de fluorita, dio origen en marzo de 1956 a dos pertenencias que se registraron como mina de uranio La Estela. Desde 1953 se extrae mineral de alta ley que fue procesado por la Comisión Nacional de Energía Atómica (CNEA) en sus instalaciones de la ciudad de Córdoba. Otros yacimientos e indicios próximos son conocidos como El Repecho, La Quinta y Bella Vista.

La mineralización está localizada en una estructura de rumbo E-NE que atraviesa el granito de Cerro Áspero, por donde han circulado fluidos hidrotermales. La mena es uranofano-autunita como producto de oxidación de pechblenda primaria. En la zona del yacimiento los granitos sufrieron dos periodos de alteración espacial y genéticamente relacionados con las estructuras: uno generó episienitas feldespáticas, brechas con hematita y venas de cuarzo con hastiales sericitizados y el otro se manifiesta por la sericitización y caolinización de los hastiales, muscovitización y cloritización de biotitas, presencia de fluorita y caolinización intensa de plagioclasas en zonas trituradas. Los minerales secundarios y de enriquecimiento supergénico son uranofano y en menor proporción autunita. La gummita ha sido reconocida en los nódulos de pechblenda. El uranofano por su extrema movilidad invade las zonas trituradas y las diaclasas próximas al cuerpo mineral, constituyendo la base de la explotación comercial (Zarco, 1989).

Los minerales primarios están representados por pechblenda, pirita y calcopirita en ganga silícea. Durante la explotación de la zona superior del yacimiento se encontró un nódulo de pechblenda que proporcionó alrededor de 70 kg de mineral negro.

En el sector central del yacimiento la mineralización uranífera está asociada a la fluorita negra que cementa la brecha de la falla principal. La estructura mineralizada muestra una reactivación tectónica y re-cementación con fluorita.

Una datación en pechblenda por el método Pb/U dio 23 ±1 Ma, Oligoceno-Mioceno (Stipanicic y Linares, 1969).

La mina La Estela produjo, hasta el año 1962, 3400 t con una ley media de 3,995 %o de U. Luego la CNEA asumió la explotación del yacimiento hasta que en 1990 se paralizó la actividad.

El sistema de explotación fue a cielo abierto (250x 100x 70 m), desarrollándose 5 niveles de explotación en bermas de 6-10 m de altura. Una primera estimación provisoria de reservas geológicas arrojó la cifra de 100000 t con una ley media de 0,700 %o U (Blasón, 1999).

Uranio, Columbio y Tantalo en pegmatitas

Las pegmatitas uraníferas afloran en la sierra de Comechingones en la zona de Merlo y San Javier; las más conocidas son las minas Ángel, del Grupo Minero La Ona, y Cerro Blanco (Angelelli, 1984).

Los minerales de uranio en la sierra de Comechingones fueron estudiados por Rigal (1938), quién estableció la presencia de gummita, autunita y torbenita (como productos secundarios de pechblenda o uraninita) y uranotorita. Otras manifestaciones asociadas a pegmatitas de la misma sierra fueron citadas por Catalano (1940). En el año 1945, la Dirección General de Fabricaciones Militares efectuó reconocimientos preliminares en cuerpos pegmatíticos en las sierras de Córdoba y San Luis (Angelelli y Varese, 1947). Methol (1971) hizo referencia a minerales de colombio y tantalo asociados genéticamente con los de uranio en rocas pegmatíticas. A la fecha, sólo se conocen unos pocos yacimientos que se han explotado especialmente por mica y berilo y explorado por uranio.

Los cuerpos pegmatíticos uraníferos se caracterizan por la presencia de zircon, granate (almandino), triplita, berilo, escasa ghanita y turmalina, apatita, columbita y tantalita, molibdenita, pirita y calcopirita muy escasa. Entre los minerales secundarios aparece limonita (formada a partir de la triplita), malaquita, caolín, sericita y vermiculita. Los minerales de uranio identificados en las pegmatitas son uranita (UO2), gummita, uranotilo, ocre de uranio, autunita y posible renardita. La uraninita forma concentraciones de distribución irregular, como cristales cúbicos de color amarillo canario por alteración y octaédricos dentro de muscovita. Otros cristales, también cúbicos, de color anaranjado, corresponden a gummita en un grado menos avanzado de auto-oxidación radioactiva.

Los depósitos forman concentraciones de escaso volumen que son aprovechadas como un
subproducto en las explotaciones de feldespato, cuarzo, berilo y minerales de litio.

Uranio en rocas sedimentarias

Manifestaciones uraníferas parecerían estar asociadas a los calcretes que afloran al oeste de Santa Rosa de Conlara, en una zona próxima a la ruta provincial 5.

Según Valvano (1949), el mineral de uranio se presentaría como un agregado cristalino granuloso, amarillento y algo verdoso, formando costras delgadas o en venillas de 1-2 mm de espesor. Análisis químicos revelaron la presencia de uranio, vanadio, fósforo, potasio y fosfatos. Según el mismo autor, el origen del mineral estaría relacionado con el agua circulante y ascendente que habría formado también los calcretes de la Formación Paso de Las Carretas de edad neógena. La manifestación abarca un área de unos 900 m².

Elementos de la Tierras Raras, Torio y Uranio.

Distrito Rodeo de Los Molles

El distrito Rodeo de los Molles está ubicado en la sierra de San Luis, a 15 km al oeste de San Martín. El acceso a la zona se realiza por camino pavimentado desde la localidad de San Martín hasta el dique Las Huertitas y luego se sigue por una huella minera unos 2 km al oeste de dicho dique.

El yacimiento fue descubierto por la radimetría aérea llevada a cabo por la Comisión Nacional de Energía Atómica (Lira, 1982), cuyas anomalías en torio permitieron separar áreas donde luego se realizó la prospección de minerales pesados en aluviones y geoquímica de roca. Posteriormente se delimitó una extensa zona de alteración con ayuda de imágenes satelitales y fotografías aéreas. Desde su descubrimiento se realizaron estudios geológicos, mineralógicos y petrográficos. Entre 1987 y 1992 la empresa Michelotti e Hijos S.R.L. desarrolló trabajos exploratorios sistemáticos, realizando más de 6000 m de perforaciones con recuperación de polvo, hasta profundidades de 80 m y estudios de tratamiento mineralúrgico de la mena. Mediante radimetría se circunscribieron tres anomalías principales denominadas Norte, La Julia y El Rulo. En estas zonas se determinó la presencia de mineralizaciones de tierras raras y torio (uranotorita), ambas con contenidos significativos de uranio.

La descripción completa del yacimiento puede consultarse en Lira et al. (1999). La mineralización de tierras raras y torio en el yacimiento Rodeo de Los Molles está dentro de un cuerpo granítico elíptico alterado hidrotermalmente (fenita), localizado en el stock de monzogranito biotítico Las Huertitas, dentro del batolito Las Chacras. La mena aparece como manchas aisladas formadas por intercismientos de britholita, allanita, apatita, bastnaesita, fluorita, sphena, cuarzo y augita-egrina; también como nódulos de uranotorita y venas tardías de calcita, fluorita y bastnaesita. La fenita es un producto de alteración del monzogranito biotítico por la adición de K y Na, y pérdida de Ca y Sr; el microclino y la plagioclase han sido reemplazados por perita, y la biotita ha sido convertida en agregados de clinocloro, anatas, caolinita y hematita (Lira y Ripley, 1992).

Datoanías radimétricas Rb/Sr dieron una edad de 174+2 Ma (Jurásico medio) para el proceso de fenitización-mineralización (Lira et al., 1999).

Los minerales de tierras raras son ricos en Cerio. La britholita y allanita se presentan como agregados macizos o en cristales euhedrales; en muchas muestras la allanita incluye a britholita. Ambos minerales están parcial o totalmente reemplazados por bastnaesita o thorbastnaesita (Gay y Lira, 1984). La bastnaesita se presenta en venas que cortan la fenita, caracterizadas por la asociación fluorita-calcita-bastnaesita. Los fragmentos de material sienítico mineralizado incluyen britholita, allanita, apatita, cuarzo y agregados de productos de alteración compuestos por clinocloro + sílice esferulítica + calcita + hematita, cementados por bastnaesita.

Las reservas calculadas, considerando el 12 % de la superficie total de alteración y una profundidad promedio de 30 m, suman 90.000 t de roca mineralizada con 2,52 % de óxidos de tierras raras, evaluadas como reservas demostradas y medidas. Las reservas geológicas ascienden a 5.600.000 t con 2,1 % óxidos de tierras raras, considerando todo el sector de alteración hasta 90 m de profundidad (Viñas y Gaiero, 1990).

Wolframio

Existen datos de mineralizaciones de wolframio en las sierras de Córdoba desde fines del siglo XIX. Uno de los principales distritos mineros es el cerro Áspero, ubicado en la sierra de Comechingones, al norte del batolito del mismo nombre. Según Angelelli (1950) se conocen más de un centenar de minas.

San Luis ha sido un importante productor de wolframio y presenta numerosos yacimientos que han sido agrupados como faja Valle de Pancanta-La Carolina (fuera de la Hoja), faja de cizalla Río Guzmán y distritos Los Cóndores, La Estanzuela y Los Avestruces. La geología y génesis de los yacimientos de wolframio ha sido discutida por varios autores, entre ellos Monchablón (1956), Stoll (1963), Ambrosini et al. (1981), Leveratto y Malvicini (1982), Brodtkorb et al. (1984), Hack et al. (1991) y Fernández et al. (1991).

Distrito Cerro Áspero

El distrito wolframífero Cerro Áspero se ubica en la sierra de Comechingones, a unos 40 km al oeste de la localidad de Berrotarán. Comprende las minas San Virgilio, Grupo Fisher, Grupo Número Cinco, Pilocada, Grupo Cerro Áspero, Progreso, La Leona, Pródiga y Paz, entre otras.

Durante el emplazamiento de los monzogranitos del Complejo Cerro Áspero, se desarrollaron estructuras circulares y radiales donde se alojaron cuerpos de aplita y pegmatita. En el sector norte del batolito, los procesos hidrotermales asociados a la etapa final del emplazamiento del plutón desarrollaron enjambres de vetas mineralizadas con wolframita, molibdenita, cuarzo + fluorita + apatita + sulfuros de Cu, asociados con la greisenización de la parte cuspidal de los plutones graníticos Los Cerros y El Talita. Las mineralizaciones se presentan en vetas y mantos, brechas hidrotermales o diseminados.

La wolframita está acompañada por molibdenita, pirita, bornita, calcopirita, bismutina, galena y esfalerita. Los minerales secundarios son limonitas junto con escasa malaquita y crisocola. La ganga corresponde a cuarzo, apatita y fluorita. La mineralización diseminada en la roca granítica está representada por molibdenita junto con escasa wolframita y sulfuros de metales base.

Los cuerpos de brecha están asociados a zonas de extensión que se desarrollaron en las milonitas que rodean al granito. Este modelo se da en los grupos Fischer, San Virgilio y Cerro Áspero. La Brecha San Virgilio alcanza una profundidad de 120 m, de acuerdo con datos de perforaciones realizadas por Aguilar S.A. en el año 1983. Las brechas contienen fragmentos angulosos de milonita, aplita y cuarzo de veta, cementados por cuarzo portador de wolframita, pirita, calcopirita, molibdenita, apatita, muscovita, fluorita y turmalina. El cuarzo se presenta como agregados macizos de grano mediano a grueso, de color blanco lechoso a gris y en ocasiones se observan drusas con muscovita, fluorita y cuarzo ahumado y rosado. La muscovita de grano fino a grueso se desarrolla en las salbandas con una orientación transversal a los contactos.

Las venas y vetas están muy difundidas en todo el sector. Se presentan en estructuras extensionales de rumbos NNO y N-S, que se ramifican y entrelazan formando fajas de hasta 5 m de potencia.

Una datación K/Ar sobre muscovita secundaria asociada a la mineralización, dio una edad de 348+10 Ma (Mutti y González Chiozza, 2005 a y b).

Los cuerpos de relleno con múltiples episodios de crecimiento formados por cuarzo y mica recristalizada tienen leyes mayores a 1 % W2O3, con 0, 18 g/t Au.

Como sucedió en muchos distritos wolframíferos del país, las minas fueron explotadas principalmente durante las 1ra y 2da guerras mundiales y sólo se conocen algunos datos de leyes y producción. Entre los años 1939 y 1963, el grupo San Virgilio produjo 400 t de concentrados con una ley de 71 % de W2O3, mientras que entre los años 1954-56 el grupo Fischer registró una producción de 20 t de concentrados y en el año 1939 la mina San Esteban (a 1, 5 km al sur de San Virgilio) produjo 7 t de concentrados (Angelelli, 1984).

Distrito San Martín

El distrito engloba una serie de yacimientos ubicados entre San Martin y Villa Praga. Entre ellos se destacan los grupos mineros Los Avestruces, Las Asperezas, Cerrito Blanco y la mina Los Piquillines.

El grupo Los Avestruces está compuesto por un sistema de vetas de rumbo noroeste a casi este-
oeste, integrado por las denominadas estructuras San Justo, Higuera, Negra y Buitres 1 y 2. Entre los autores que estudian este depósito, se destacan Beder (1922), Angelelli (1950), Liebers (1972) y Monte negro et al. (2009). Los yacimientos están caracterizados por contener scheelita en vetas de cuarzo asociadas a diques lamproírficos. Las vetas tienen longitudes de decenas a centenas de metros, son delgadas y subverticales, con morfología lenticular. La paragénesis identificada es cuarzo y scheelita, con asociación de biotita, feldespato potásico, turmalina, fluorita, wolframita y escasos sulfuros. Las texturas reconocidas son de relleno y reemplazo. La scheelita se presenta como cristales bipiramidales aislados y agregados de varios centímetros de diámetro; también se encuentran individuos tabulares de wolframita en el cuarzo; en cantidades reducidas aparecen pirita, calcopirita y calcosina, así como hematita, fluorita, turmalina (chorlo) y berilo; como minerales supergénicos se han reconocido calcosina, covelina, goethita, cuprita, bismutita, malaquita y azurita; la biotita aloja entre sus láminas granos de scheelita y cuarzo. Las rocas básicas, que hacen de caja a las vetas, están propilitizadas; observándose epidoto, clorita, calcita, sericita y caolinita; percibiéndose además feldespatización y silicificación. En la roca granítica del sector Los Buitres (Los Avestruces), se ha desarrollado greisen cuarzo-muscovítico en las salbandas de las vetas, con valores elevados en W y Li. Las alteraciones son previas a la mineralización y se produjeron a temperaturas entre 450 y 350ºC. El yacimiento La Higuera es más importante del grupo Los Avestruces (Montenegro et al. 2009); consiste en dos vetas de cuarzo, subparalelas, subverticales de anchos variables entre 0, 20 a 1, 20 m y longitudes que alcanzan 2000 m (Etcheverry, 1987). Junto a las vetas se interpone un dique lamproírfico de hasta tres metros de ancho, denominado por los mineros «caballo de piedra». La mineralización está compuesta por scheelita en cuarzo, con menores proporciones de biotita, feldespato potásico y wolframita, a la que siguen sulfuros de Bi, Fe y Cu. Las vetas Buitres 1 y 2 tienen una longitud superficial de 700 y 500 m, respectivamente, encontrándose distanciadas entre sí por unos 30 m de granitoide. La roca granítica tiene una alteración moderada (calcinitización de feldespato potásico, aumento de cuarzo y muscovita y mayor contenido de volátiles, F y Li), sin embargo se identificaron sectores más alterados que contienen una faja de cuarzo y muscovita próxima a las vetas.

El grupo minero La Aspereza está localizado a 8, 5 km en línea recta al suroeste de San Martin y próximo al depósito de Los Avestruces. Está formado por cinco vetas subparalelas orientadas con dirección 200/70. Allí, las metamorfitas del Complejo Conlara están intruidas por diques lamproírficos, con direcciones 240/80, con sus bordes mineralizados. Las vetas se denominan correlativamente 1, 2, 3, 4 y 5; la 4 es la más importante por extensión y trabajos efectuados. Las zonas mineralizadas tienen morfología lenticular y corridas visibles de hasta 400 m, con espesores de 15 a 30 cm y su composición es principalmente cuarzo-scheelita, junto con escasa wolframita, biotita, turmalina y menos comúnmente pirita y calcopirita como minerales hipogénicos. La scheelita se dispone a modo de ojos y diseminados en cuarzo, biotita y lamproířfo (conteniendo hasta 1408 ppm de W).

El grupo Cerrito Blanco, situado a 8 km al suroeste de San Martín, está integrado por un sistema de vetas paralelas, de dirección 110º e inclinación variable, alojadas en los esquistos micáceos, granito blanco rosado y pegmatita. Las vetas están formadas por un agregado de cuarzo y turmalina con scheelita finamente distribuida que se dispone como guías de hasta 30 cm de espesor a ambos lados de un filón lamproírfico. En una de las labores superficiales se descubrió sanmartinita (localmente denominado wolfram opaco), originada por un reemplazo metasomático de soluciones ferrocincíferas sobre scheelita. Hacia el oeste del anterior, se localiza el yacimiento Los Nogales, conformado por vetillas de hasta 600 metros. La scheelita es el principal mineral y está asociada a wolframita, cuarzo, feldespato y escasa turmalina. A 1 km al sur de Cerrito Blanco se sitúa la mina La Bochita, compuesta por guías de cuarzo con scheelita separadas por 50 cm de lamproířfo; presenta una dirección 210/70 y se observa sobre una corrida de 200 metros. Unos 1000 m más al sur se emplazan las vetas San José y Santa María, en el contacto entre esquistos y granito. Las venas de cuarzo con scheelita están adosadas a un dique lamproírfico de dirección 230º. La scheelita también se encuentra diseminada en una anfibolita epidotizada, al oeste del contacto granito-esquito. En el área de Villa Praga se ha reconocido otro depósito denominado La Teófila, de características similares, consistente en una veta de cuarzo de 285 m de corrida que, rellena una fractura que...
contiene el dique básico y luego la veta de cuarzo con nidos de scheelita y escasa pirita.

El yacimiento Los Piquillines se localiza sobre la margen derecha del arroyo Las Huertas (afuente del río Quines). Las estructuras mineralizadas constituyen las vetas Santa Bárbara, Lucero y Caballito. De acuerdo con Monchablón (1956) por estas fracturas se produjo la intrusión del lamprófiro y luego el relleno por soluciones hipotérmicas con wolframio. La veta Santa Bárbara es la más trabajada, tiene una dirección de buzamiento 160-170/40, una extensión aflorante de 180 m y potencias de 0, 4 a 1 metro; su morfología es lenticular, adelgazándose hasta finas guías. La veta Lucero muestra una dirección variable, pero en la zona del chiflón tiene una dirección 120/27, formando un cruceo hacia Santa Bárbara. La zona de contacto de las dos vetas, de inclinación opuesta, se conoce como La Canaleta. La estructura Caballito aflora a lo largo de 230 m como dos vetas de 10 a 20 cm de ancho separadas por 70 cm de lamprófiro estéril, con una dirección 150/40. Las vetas de cuarzo contienen scheelita como cristales y «puros» (concentrados de varios kilogramos), acompañados por biotita, feldespato, fluorita, pirita y reducidas cantidades de berilo y bismutita. Podría vincularse genéticamente con el granoit El Hornito.

El yacimiento Los Avestruces fue descubierto durante la década de 1910 y la explotación se inició en 1921. Los trabajos practicados en las vetas del distrito son diversos y consisten en laboreos mineros de superficie y subterráneos que contabilizan 8500 m de desarrollo, distribuidos fundamentalmente en rajos (6300m), piques (200m), chimeneas (300m), chiflones (130m), socavones (30m) y galerías (1500m), en gran parte inaccesibles (tapados y/o inundados). Durante el período de explotación, la empresa Sominar instaló una planta de concentración gravitacional que funcionó hasta 1945 y llegó a producir 2300 kg de concentrados por mes, totalizando 17 toneladas.

Distrito Río Guzmán

El distrito está situado al sur de la estancia Cerros Largos, en la provincia de San Luis, formando una franja mineralizada a lo largo de la cizalla Río Guzmán. La franja está cortada por la ruta provincial 10, que une Paso del Rey con La Toma. Agrupa las minas La Blanca, La China, Efinov, Eureka, El Traguito, El Destino, Intiguasi, La Higuera, Yanquetruz, San Manuel, La Susanita, Atahualpa, El Sol, El Bochita, La Lalita, Aurelia, Pochita, San Cayetano, El Duraznito, La Rioja, Clyde, Almirante Brown, Alto Plumerilloso y Seis de Setiembre.
El distrito fue estudiado por Fernández et al. (1991) y Brodtkorb et al. (1999).

La mena principal de estos depósitos es scheelita, según Sims et al. (1997) se encuentra asociada a venillas de cuarzo o diseminada en las filitas de la Formación San Luis, dentro de una zona de alta deformación. Las venillas de cuarzo se desarrollan en el contacto entre rocas competentes (metapsamitas, cuarcitas o aplitas) y las filitas; las venillas están deformadas y hay recristalización de los minerales. Los sulfuros y óxidos son poco abundantes mientras que la turmalina y mica blanca son muy abundantes. Las zonas mineralizadas están asociadas con estructuras que alcanzan potencias de 0, 2 a 2 m (charnelas y planos axiales de pliegues) que se habrían formado durante una fase compresiva de edad devónica.

Los cuerpos cuarzosos están diaclasados y brechados, conteniendo gran cantidad de turmalina especialmente en los bordes. La mineralización está constituida por scheelita, pirita y muy escasa esfalerita, calcopirita, bismutina, oro y wolframita. El cuarzo de las vetas presenta dos grupos de inclusiones fluidas primarias que se caracterizan por su composición, temperatura de homogeneización y salinidad (Beer, 1996; Brodtkorb et al., 1999).

Varias interpretaciones existen sobre el origen y la edad de las mineralizaciones de wolframio en la faja de cizalla del río Guzmán. Según un grupo de investigadores el origen es sinagenético, asociado a un vulcanismo felsico que luego fue movilizado durante la deformación y metamorfismo (Brodtkorb y Brodtkorb, 1975, 1979; Brodtkorb et al., 1985; Fernández et al., 1991; Hack et al., 1991). Otros, entretanto, explicaron que el W tiene un origen epigenético sindeformacional asociado a fluidos pneumatolíticos o hidrotermales relacionados con granitos (Stoll, 1963). Otra hipótesis dice que el W fue introducido por fluidos hidrotermales dentro de la Formación San Luis, durante la deformación compresiva D3 del Devónico inferior, controlada por la presencia de zonas de cizalla y pliegues, particularmente en zonas con diferente competencia debido al contraste litológico (Sims et al. (1997); el reemplazo de granates postcinemáticos en las inmediaciones de las vetas por agregados de sericita-clorita y la edad de 360-350 Ma de la alteración sericitica relacionada, permitió suponer que las vetas se emplazaron en épocas tardías con respecto a la cizalla y posiblemente en niveles con una profundidad ubicada en la transición dúctil-frágil. Las temperaturas de homogeneización halladas en el cuarzo resultan coherentes con ello (Sims et al., 1997).

Los yacimientos fueron trabajados durante las guerras mundiales explorando y explotándose simultáneamente, mediante trincheras y en algunos casos piques y pequeñas galerías. La producción ha fluctuado según la cotización del mineral.

Si bien muchos depósitos son conocidos por su buena mineralización, no se conocen datos de leyes ni producción. Durante un programa de fomento minero, en el yacimiento El Duraznito se realizó un pique de 40 m de profundidad, 3 cortavetas y 150 m de galerías sobre veta (Leveratto y Malvicini, 1982). En las zonas de Santo Domingo y de La Criolla, además de wolframio se explotó oro, pero nunca se hizo una exploración sistemática por ese elemento a lo largo de todo el distrito. En la ruta que une Paso del Rey con La Toma se hallan las ruinas de dos viejas plantas de concentración, una de las cuales trabajó intermitentemente hasta 1982. En la mina El Arucano se extrajo la scheelita por medio de trincheras a cielo abierto, a lo largo de 1000 m, con anchos de 1-2 m y profundidades variables entre 2 y 15 m, que terminan frecuentemente en piques, siguiendo una zona más rica en scheelita. La estructura La Higuera, paralela a la anterior, fue explorada también mediante trincheras. En la zona de La Teodolina se han ubicado numerosas pertenencias, denominadas La Teodolina, La Rioja, Almirante Brown, Rivadavia, La Reinita, 6 de septiembre y Clyde. La Teodolina fue una mina rica pero de poco desarrollo. En mina La Rioja la ley explotada era de 0, 7-1 % de WO3, (Monchablon, 1956), pero las estructuras mineralizadas son de pequeñas dimensiones.

Distrito Los Cóndores - Santa Rosa de Conlara

Se agrupan aquí los yacimientos situados entre Santa Rosa de Conlara y Concarán. Se destacan los yacimientos Los Cóndores, El Águila, El Mantanial y Santa Rita. Otros yacimientos como San Vicente, Diana, La Chata y San Benito están localizados más próximos a Santa Rosa de Conlara.

El yacimiento Los Cóndores fue descubierto en 1897 y adquirido al año siguiente por la Compañía Minera Hansa, que lo explotó hasta 1918. Fue uno de los cuatro grandes yacimientos que se explotaron durante la primera guerra mundial. A partir de 1934 la Compañía Puntaria de Minerales recuperó wolframita de las arenas del arroyo Las Cañas, donde se descargaban los relaves. Otros datos figuran en Angelelli (1950, 1984) y Etcheverry y Brodtkorb (1999).
El yacimiento Los Cóndores está formado por vetas de cuarzo alojadas en los esquistos del Complejo Metamórfico Conlara, junto con pegmatitas y díques graníticos. Ocupan estructuras verticales de rumbo NE, con potencias entre 0, 3 y 3 metros. Las vetas poseen una marcada estructura simétrica. Las salbandas son arcillosas y en la roca de caja es frecuente una turmalinización que arranca desde los filones. Los bordes externos de las vetas están conformados por paquetes de mica verdosa, orientados perpendicularmente a la estructura de estas, alcanzando hasta 12 cm de ancho; sigue luego una franja de mica con wolframita acompañada por turmalina y cuarzo. En el centro se observa principalmente cuarzo, al que se asocian wolframita y sulfuros. La wolframita se presenta en cristales tabulares aislados, de tamaños microscópicos hasta 10 cm de largo, o formando «nidos». También aparece scheelita asociada a cuarzo, mica y wolframita. Los sulfuros reconocidos son pirita, calcopirita, piromorfitas, bismutina, as well as scheelita, biotita, antimonita y molidenita, además de oro, antimonio nativo y bismuto nativo. Los minerales secundarios observados son cuvelina, limonitas, jarosita, malaquita, azurita, atacamita, crisolita, bismutita y ocre de tungsteno. La ganga está formada por cuarzo, muscovita, turmalina, fluorita, calcita, apatita y feldespato. Entre los minerales oxidados hay limonita, malaquita y ocre de wolframio. El cuarzo aparece muy fracturado y con guías de hematita. Estos yacimientos son reconocidos por la presencia de hübnerita (tungstato de manganeso) distribuida irregulares como cristales aislados de 1-2 cm o formando «nidos» de varios kilos. Una datación K/Ar sobre muscovita arrojó una edad de 334 Ma (Linares y Latorre, 1969) por lo que la mineralización hidrotermal de temperatura media debería ser vinculada a la formación de cuarzo con wolframita molido era transportado al arroyo de Cabeza de Novillo, donde se hallaba el mineral se solía «chancar» y luego se lavaba en el arroyo. Hasta marzo de 1953 se habían extraído unos 100 kilos de concentrado.

El yacimiento La Beatriz consiste en dos vetas de escasa potencia, con rumbo E-O y distantes entre sí unos 60 metros. La extensión es sólo visible en el área minada pues no hay afloramientos ya que todo se halla tapado por un depósito aluvional de 1 m de espesor. La estructura es brechosa y la mineralización consiste en cuarzo con wolframita, pirolusita, pirita, calcopirita y hematita; cristales de yodo rellenan fisuras. En profundidad la estructura alcanza varios metros de ancho.

La mina San Vicente presenta un pique que alcanzó 30 m de profundidad, al que se conectan cinco galerías y varios chiflones. La mina San Miguel, situada aproximadamente a un kilómetro al sudoeste del cerro del Peñón, entre Los Alanices y Las Chilcas, ha sido descubierta por unas pocas labores a cielo abierto. Se observa una veta de escasa potencia y extensión, que ocupa una estructura 30/90 que corta El Peñón. Otros destapes de exploración ponen en evidencia vetas menos importantes. En la mina San Rafael, situada a 1, 5 km a ESE de El Peñón, hay trabajos de exploración que pusieron en evidencia cuatro vetas de cuarzo en estructuras 60/90, con potencias que oscilan entre 0, 10 y 0, 80 m; las labores efectuadas a cielo abierto han alcanzado una profundidad de unos 11 m en algunos rjos y en conjunto sobrepasan los 600 m de longitud. A unos 4 km al NE de la desembocadura del Bajo de Cautana se halla la mina La Julia, donde vetas de cuarzo portadoras de wolframita tienen un ancho visible de unos 0, 25 m, guardan posición subvertical y rumbo E-O, cortando los esquistos del Complejo Metamórfico Conlara; la mina fue trabajada por corto tiempo y de manera artesanal; el mineral de cuarzo con wolframita molido era transportado al arroyo de Cabeza de Novillo, donde se concentraba mediante ‘‘canaleta’’. Según Barrie (en Angelelli, 1984) la producción efectuada por la Compañía Minera Hansa hasta 1918 fue de aproximadamente 1600 t de concentrados de tungsteno. En el año 1938 se habilitaron las viejas labores subterráneas de la mina Los Cóndores y se instaló una planta de concentración gravitacional y flotación de 200 t/día. Entre los años 1939 y 1963 se produjeron 6191 t de WO₃ con leyes de 66 a 71 %;
138 t de bismuto con leyes de 36 a 64% y 144 t de bismuto con leyes 21-29%. Por otro lado, se obtuvieron por flotación 5734 t de concentrados de cobre. Posteriormente, en 1952, Seminar S.A. puso en funcionamiento una nueva planta de 500 t/día que operó hasta 1962.

Los laboreos realizados en el yacimiento Los Cóndores consisten en un socavón y galerías en los niveles -54, -110, -137 y -300 m unidos por chimeneas y piques, que totalizan aproximadamente 20000 metros. La exploración fue realizada por el método corte y relleno. En esta mina los concentrados de wolframita y scheelite habrían alcanzado leyes medias de 0,8 a 1% de WO₃. Las reservas asignadas a este yacimiento en 1962 ascendían a 282000 t, con leyes de 0,3-0,5% WO₃.

Distritos La Estanzuela, San Felipe y Villa Praga

En la sierra de La Estanzuela, a unos 25 km al sureste de la ciudad de Tilisarao, se conocen los depósitos conocidos como La Estanzuela, San Pedro y El Talar. Otro distrito situado en las lomadas de la sierra de San Felipe, a unos kilómetros al noroeste de la localidad de Naschel, está integrado por las minas La Chiquita, Chañar Marcado y La Argentina. Más al oeste, en las inmediaciones de Villa Praga, también existen unas viejas exploraciones realizadas a cielo abierto.

La mineralización consiste en scheelite diseminada en rocas calcisilicáticas y mármoles dolomíticos del Complejo Metamórfico Conlara; los diseminados alcanzan potencias de hasta 5 m y corridas de más de 100 m (Brodtkorb y Pezzutti, 1991; Brodtkorb y Brodtkorb, 1999). Si bien en el yacimiento La Chiquita se estimaron 15000 t de reserva con una ley de 0,7% (Monchablón, 1956), no se conocen datos de leyes ni de producción.

Molibdeno

Las manifestaciones de molibdenita se presentan como diseminados asociados a granitos alterados hidrotermalmente, o vinculados a granitos de cuarzo. Según Mutti et al. (2005), la mineralización diseminada alcanzaría un 2% del volumen de la roca granítica, representada por molibdenita junto a escasa wolframita y sulfuros de metales base. La molibdenita está acompañada por apatita, granate y a veces berilo y topacio, presentándose como nódulos de 2 mm a 1 cm de diámetro.

En uno de estos filones de rumbo E-O e inclinación 30° N, que aflora a lo largo de 25 m con una potencia de 50-80 cm, se han estimado contenidos de 3-4% de molibdenita (Quiroga, 1949).

Bismuto

Según Angelelli (1984), se han recuperado cantidades importantes de bismutina y bismuto nativo durante la explotación del yacimiento de wolframita y scheelite Los Cóndores (ver wolframio). La existencia de bismuto ha sido también comprobada en otros yacimientos de tungsteno.

De acuerdo con los datos aportados por Angelelli (1984), durante el período 1936-1945 los concentrados de bismuto a nivel nacional alcanzaron 260 toneladas, aportados por Córdoba (72,7 t); San Luis (151,4 t) y San Juan (37,5 t). Durante el lapso 1946-1980, aumentaron a 310 t de concentrados, con tenores variables de entre 44-64%, 30% y 17-19% de bismuto.

Cromo

En la vertiente oriental de la sierra de Comechingones se encuentran tres distritos mineros que representan manifestaciones y yacimientos de cromita (Villar, 1985; Mutti, 1999). Si bien se ha comprobado la existencia de cromita, sus concentraciones sólo permiten, a la fecha, definir la existencia de recursos ocultos o subeconómicos. Los distritos son conocidos como Los Guanacos, Cerro San Lorenzo, Los Permanentes y Loma Blanca.

El distrito Los Guanacos se encuentra a 12 km al sureste de la población de Yacanto de Calamuchita y está constituido por las minas Los Guanacos, Árbol Seco, Ume Pay, San Gregorio, El Rodeo, 25 de Mayo, San Miguel y Las Baguales. El distrito Cerro San Lorenzo, denominado también grupo Cañada de Álvarez (Díñin, 1956) se localiza a 30 km al oeste de la ciudad de Berrotarán y a 20 km al nororoste de la localidad de Rio de
los Sauces. Está integrado por las minas 12 de Noviembre, Corpus Christi, Resistencia, El Destino, Tigre Muerto, Las Cortaderas, Arroyo Hinojo, Vendedora, Triunfo y Comechingones. El distrito Los Permanentes se halla a unos 42 km al oeste de la estación Gigena (FCGBM), entre Alpa Corral y Río de los Sauces, destacándose la mina El Cromo (-32°35’, -64° 40’) en la que se puede ver un pequeño cuerpo de serpentinita que no supera los 100 m de extensión.

Las mineralizaciones del distrito Los Guanacos están alojadas en rocas ultramáficas serpentinizadas. Los cuerpos tienen formas lenticulares de dimensiones variadas con orientación NO. La mina Los Guanacos es el yacimiento de cromita más importante del país. El depósito está formado por ortopiroxenitas y harzburgitas con filones y lentes de wehritas, websteritas, troctolitas, lherzolitas y dunitas serpentinizadas y/o anfibolitizadas, que definen una estratificación gruesa subconcordante con la foliación de las metamorfitas de la caja. Las rocas están cortadas por diques de metagabros, con potencias entre 1 y 10 m, que son interpretados como diferenciados tardíos. Las concentraciones de cromita se localizan en «pods» de composición dunítica de coloración blanca amarillo a verdoso con abundantes venillas de crisotilo, calcita y magnesita. Las rocas ultramáficas ocupan la charnela de un pliegue. Numerosos filones de pegmatita y aplita intruyen estas rocas generando, en el contacto, bolsones de vermiculita, asbestos, clorita, talco y corindón. La paragénesis con cromita dominante, asociada a dunitas serpentinizadas, tiene un contenido en Cr₂O₃ mayor al 39%; presentan ferricrocita y exsoluciones ricas en Cr-Fe y Cr-Al; en su evolución composicional muestran una tendencia hacia los extremos ricos en hierro a partir de cromitas aluminíferas. Como mineral secundario se destaca sólo la presencia de hematita a partir de la alteración de magnetita. Los minerales de cromo están representados esencialmente por minerales del grupo de la serpentina, con antigorita y lizardita, asociadas a magnetita arborescente y subordinadamente clinocloro, olivino, enstatita, tremolita-actinolita y brucita junto a crisotilo, calcita, magnesita y óxidos de manganeso como relleno de microfisuras.

Los yacimientos del distrito San Lorenzo se encuentran en cuerpos ultrabásicos serpentinizados que sólo ocasionalmente exceden los 200 m de longitud. La cromita está asociada a magnetita, hematita, ilmenita y calcopirita. Análisis realizados dan contenidos en Cr₂O₃ entre 29% y 37%, en Al₂O₃ entre 26% y 36%, en FeO entre 14% y 19% y en MgO entre 12% y 15%, con una relación Cr/Fe cercana a 2. Kittl (1953) informó acerca de la existencia de serpentina niquelífera vinculada con procesos de meteorización y se destaca la participación de garnierita y limonitas de incipiente desarrollo en aquellos sectores en donde los óxidos de hierro primarios son dominantes. Los minerales de ganga corresponden a los minerales del grupo de la serpentina, acompañados por magnetita, clinocloro, brucita, talco, clorita, broncita, clinoanfiboles, carbonatos de Mg y Ca, grossularia, vesubianita, diópsido, epidoto, zoicita y sílice ferruginosa.

En el distrito Los Permanentes, los estudios efectuados por Rabbia et al. (1993 y 1994), Mutti (1994) y Villar et al. (1995) en la mina El Cromo, indicaron la participación de magnetita, titanomagnetita, ilmenita, hematita, rutilo wolframífero, espinelos de hierro, aluminio y magnesio, además de chispas de pirrotina, pentlandita y calcopirita como minerales accesorios. Cabe señalar que la participación de la asociación con óxidos de hierro y titanio en ocasiones es dominante, preferentemente en cercanías de los cuerpos de anfibolita (metagabros y metapiroxenitas) que intruyen a la serpentinita. La cromita de la mina El Cromo tiene un contenido en Cr₂O₃ entre 39% y 50%, en Al₂O₃ entre 18% y 25%, en FeO entre 15% y 17%, en MgO entre 12% y 16% y una relación Cr/Fe variable entre 2, 18 y 2, 76; no obstante, la información presentada por Sgrosso (1943) a partir de análisis efectuados por vía húmeda indicaron contenidos en MgO superiores y una menor relación Cr/Fe. Como minerales secundarios se observa la presencia de hematita secundaria y garnierita. Los minerales de ganga están representados por minerales del grupo de la serpentina, cloritas, espinelos aluminíferos y óxidos de hierro y de titanio.

Estudios sobre la metalogenia de los yacimientos de cromo pueden consultarse en Rabbia et al., 1993; Sosa, 2001 y Mutti, 1998. Según Mutti (1999), en nuestro país la explotación documentada de minerales de cromo se inició en el año 1941 en el departamento Calamuchita de la provincia de Córdoba, luego que el mineral fuera descubierto por Bodenbender (1905). A partir de allí y hasta la década de 1950 se desarrolló el 70% del laboreo existente, movilizado por un proyecto de exploración para obtener materia prima mineral para abastecer una planta de beneficio que se instalaría en la provincia de Córdoba. El plan de exploración llevado a cabo por Fabricaciones Militares involucró
la ejecución de laboreo subterráneo y una prospec-
ción geofísica mediante magnetometría en el cerro
Los Guanacos (Pagés y Re, 1953). Con posteriori-
dad no se efectuaron otros trabajos de prospección.

Entre los años 1941 y 1949 se extrajeron de las
minas cordobesas unas 3600 t de material de 1ª y 2ª
categoría. La explotación se realizó mediante labo-
reo a cielo abierto, de distintos tipos y tamaños (can-
teras, trincheras, escarpes, piques, etc.). El material
era seleccionado a mano en cancha, Con posteriori-
dad, y hasta el año 1959, se alcanzó una producción
de unas 700 t destinadas principalmente a la indus-
tria refractaria.

Entre los trabajos existentes se destacan unos
350 m de labores subterráneas de exploración (ga-
erias y estocadas) efectuadas en el cerro Los
Guanacos durante la década del 50, por parte de
Fabricaciones Militares.

De acuerdo con los informes de García
Castelllano (1943), Sgrosso (1943), Angelelli (1945),
Quiroga (1949), Villagran (1949), Pagés y Re (1953)
y Difini (1956), el mineral que fue extraído de los
depósitos de Córdoba acusó tenores entre 33, 00%
y 47, 55% de Cr2O3, con relaciones Cr/Fe com-
prendidas entre 1, 90 y 3, 04.

6.2 DEPÓSITOS DE MINERALES NO
METALÍFEROS

Pegmatitas portadoras de Be, Li, Ta, Nb,
Sn, TR, U, Th

Las pegmatitas de la clase elementos raros de
Cerný (1991) o tipos 3 y 4 de Herrera (1968) están
ampliamente representadas en la sierra de San Luis.

Los depósitos han sido descritos por varios autores,
incluyendo Herrera (1963, 1965, 1968), Angelelli y
Rinaldi (1963), Ortiz Suárez y Sosa (1991), Sosa
(1990), Oyarzabal y Galliski (1993) y Galliski (1992,
1994). Han sido reconocidos ejemplos de pegmatitas
con berilo, (subtipo espodumeno y albita espodumeno
de Cerný (1991) e incluso pegmatitas casiteríferas.

El zonado interno, dimensiones y paragénesis
fueron descritas en las citadas referencias. Herrera (1968) y Galliski (1994) describieron
pegmatitas ricas en muscovita que también se

en La Estanzuela y en la región de Renca-Tilisarao
(familia LCT (Li, Cs, Ta>Nb, Rb, Be, Sn, Ga) de
Cerný (1991), sugiriendo también que algunas
pegmatitas con tierras raras (TR) de la zona de
Conlara son del tipo híbrido LCT-NYF (Nb>Ta,
Y, F, Ti, Sc, TR, Zr, U, Th).

Sobre la base de la compilación de edades K-
Ar de las pegmatitas de Sierras Pampeanas y la
correlación con otros eventos ígneos, Galliski (1994)
sugirió dos períodos principales de emplazamiento
de pegmatitas de elementos raros: un estadio
cámbrico-ordovícico y una fase post orogénica
devónico- carbonífera. Numerosas dataciones
radimétricas de las pegmatitas de la sierra de San
Luis indican dos principales períodos: 440 a 470 Ma,
durante la fase extensional famatiniana, y 415 a 340
Ma asociadas con graníticos devónicos.

Las pegmatitas devónicas ocurren dentro o en la perife-
ria de los granitos. Las pegmatitas enriquecidas en
tierras raras, U y Th, están relacionadas con el
batolito de las Chacras (Gay y Lira, 1984; Galliski,
1994) y las pegmatitas con Be- Nb-Ta-F-U están
asociadas al batolito de Achala (Morteani et al.,
1995).

Desde el año 1930 las pegmatitas de las Sierras
Pampeanas han producido más de 25000 t de berilo,
45 t de menas de Nb-Ta y 1000 t de minerales de Li
(Galliski, 1992, 1994). La provincia de San Luis aportó
casi la mitad de la producción nacional de Be entre
los años 1945 y 1979 (Angelelli, 1984). Dentro del
área de estudio, las pegmatitas también representan
importantes fuentes de minerales industriales, tales
como feldespato, cuarzo y mica, y son en menor
medida fuentes de Sn, Bi, TR, U y Th.

Distrito pegmatítico La Estanzuela, San Luis

El distrito abarca los depósitos pegmatíticos de
las sierras de La Estanzuela y Tilisarao, en la pro-
vincia de San Luis. Uno de los yacimientos más
importantes es La Viquita.

Los yacimientos fueron estudiados principalmente
por Herrera (1963), Fernández Lima et al. (1981),
Rossi (1966b) y Galliski (1994, 1999 a, b, c, d). Se
trata de pegmatitas de clase elementos raros:
lepidolita, espodumeno, albita-espodumeno. Una de
la más importante por su explotación es La Viquita.

Los cuerpos pegmatíticos del distrito La
Estanzuela están emplazados subconcordantemente
en los esquistos del Complejo Metamórfico Conlara;
tienen formas tabulares y lenticulares plegadas. Tie-

nén una estructura zonal simétrica con zona de bor-
de externa, tres zonas intermedias, núcleo y unida-
des de relleno y reemplazo (Galliski, op cit.). Los
cuerpos tienen varios cientos de metros de largo y
decenas de metros de ancho, con rumbo generales

al NE. Están formados por feldespato potásico, cuar-
zo, plagioclase, muscovita y espodumen. La plagioclase es normalmente albita (clevelandita). El espodumen se presenta como cristales decimétricos grises o verdosos, parcialmente alterados, con contenidos de Li2O entre 5,1 y 7,8. Como accesorios hay berilo, ambligonita- montebrasita, trifilina- litiofilita y sus derivados por alteración hidrotermal, columbita, talantita, tapiolita y minerales del grupo de la wodginita, casiterita, circon y apatita (Gallíski, 1999d). Se presentan turmalinizados y muscovitizados.

Dataciones K-Ar sobre muscovitas dieron una edad de 403+16Ma (Gallíski y Linares, 1999) por lo que estas pegmatitas estarían vinculadas con el Ciclo Famatiniano.

Las pegmatitas han sido explotadas por medio de rajas o canteras a cielo abierto. La selección de minerales como berilo, tantalita, espodumen y feldespato, se realizó en forma manual. Al presente se utiliza maquinaria pesada para las tareas en los frentes de ataque.

La explotación ha sido principalmente por feldespato, cuarzo y albita; si bien la muscovita es abundante, su tamaño y calidad no alcanzó para utilizarla como mica de corte. El espodumen tiene contenidos de Li2O variables entre 7,8 y 5,1%.

Distrito pegmatítico Comechingones, Córdoba

Las pegmatitas del distrito están ubicadas en el extremo norte de la sierra de Comechingones, entre los batolitos de Achala y Cerro Áspero. Los principales yacimientos son Cerro Blanco, Magdalena y grupo minero Otto. Fueron trabajadas por muscovita, cuarzo y feldespato.

Las pegmatitas fueron explotadas primeramente por uranio y también se extrajo berilo, mica y columbita. Sin embargo, el distrito está subdesarrollado y su potencial nunca fue totalmente aprovechado debido al difícil acceso. Evaluaciones económicas de varias minas del distrito fueron realizadas por Miró et al. (1986) y Miró y Torres (1986).

Las pegmatitas forman filones concordantes a ligeramente discordantes con la foliación plegada de la caja metamórfica, por esta razón los rumbos e inclinaciones de los cuerpos pegmatíticos son variables, pero en general están orientados NNO y buzan al este. Los filones tienen formas lenticulares y tabulares, con anchos irregulares a causa del plegamiento. Suelen alcanzar longitudes entre 100-300 m y excepcionalmente superan los 600 metros. Los anchos más frecuentes son entre 15 y 25 metros. Los cuerpos presentan una zona de borde de grano fino y ancho de pocos centímetros, compuesta por plagioclasa, cuarzo y muscovita; son accesorios turmalina, granate y apatita. Las zonas externas son de mayor espesor y granulometría y tienen una composición similar a las de borde; la muscovita suele disponerse en fajas de hasta 30 cm de ancho, que suelen estar explotadas. Las zonas intermedias son de grano grueso, con una composición dominada por microclino, cuarzo, plagioclasa y muscovita, normalmente de la variedad cola de pescado. El núcleo está formado por cuarzo. Los minerales accesorios están principalmente en el borde del núcleo formando la asociación berilo, columbita, triplita, uraninita y sus productos de alteración, gahnita, pirita, calcopirita, allanita. El berilo es de color verde, verde amarillento a amarillo y se presenta en cristales de variado tamaño; algunos ejemplares pequeños de heliodoro son de calidad gema (Hub, 1992). La columbita es predominantemente ferro o mangano-columbita (Gallíski y Cerný, 1998). Los minerales secundarios derivan de la alteración de uraninita. Rinaldi (1968) identificó gummita, masuyita, fourmarierita, vandendriesscheita, autunita, metaautunita y uranofano. También se presentan malaquita, pirolusita y fosfosiderita.

Muchas de las pegmatitas explotadas por muscovita probablemente pertenezcan a la clase de pegmatitas muscovíticas o de elementos raros y se habrían formado durante el tectonismo extensional famatíniano. Sin embargo, en otros yacimientos en donde no se observa zonación, los cuerpos se componen de cuarzo blanco puro, generalmente sacaróide, con muscovita como principal accesorio; estos filones tienen una génesis diferente vinculada con grietas de extensión generadas dentro de la cizalla Tres Árboles.

El yacimiento Cerro Blanco (64°55’33.187”O 32°6’42.884”S) se trabajó para la extracción de mica. En el año 1945, la Dirección General de Fabricaciones Militares realizó trabajos de exploración por
minerales de uranio, construyendo un pique de 70 m que sigue la inclinación del cuerpo, donde funcionó una bomba para el desagote. A 400 m al sur de este yacimiento existe una labor a cielo abierto con una pequeña galería de rumbo NS, utilizada para exploración de berilo. Otros yacimientos donde se ha extraído mica y berilo, conocidos como Los Cencerros, San Roque y Santa Ana, están distanciados 1000 m con dirección NO. Las labores realizadas son muy rudimentarias y se inundan con facilidad. Más al sur, en el yacimiento La Felicidad se ha realizado un socavón y unos chiflones sobre un filón de cuarzo, microclino y muscovita de rumbo NNO, donde se habrían extraído cristales de berilo con secciones basales de hasta 20 cm, de color amarillo a verde claro.

El yacimiento La Magdalena (64°51′55.618″O 32°10′8.484″S), ubicado a unos 200 m al norte del cerro Redondo, comprende varios filones de pegmatita con cristales de berilo color celeste verde-oso y amarillento de hasta 15 cm de diámetro o en concentraciones irregulares distribuidas en el núcleo de cuarzo. La pegmatita contiene también granate, nódulos de gahnita y raramente molibdenita. Los trabajos realizados consisten en laboreo a cielo abierto y galerías achiflonadas que no superan los 15 m, al presente abandonadas (Granero Hernandez y Davids, 1951). Miró et al. (1986) calcularon 180000 t de reservas prospectivas.

En la mina Eduardo (64°51′46.884″O 32°9′29.951″S) se realizaron unos 250 m de laboreo, entre túneles, piques y chiflones. Hasta el año 1963 habría producido unas 265 t de berilo. Miró y Torres (1986) calcularon 85400 t de reservas prospectivas.

El distrito ha sido dividido en 4 grupos: San Martín- Cautana (yacimientos La Totora, León Herido, La Meta, Las Cuevas, Yatasto y Géminis); Villa Praga- Las Lagunas (yacimientos María Elena, Rosanna, La Esmeralda y Nancy); Paso Grande- La Toma (yacimientos Paso Grande I y II y Beatriz) y Occidental (yacimientos San Felipe, La Marta y Las Palomas).

Los filones pegmatíticos del distrito Conlara son cuerpos subconcordantes con la foliación de los esquistos del Complejo Conlara, tienen posiciones subverticales y potencias entre 2 y 8 metros. Están formados por cuarzo, feldespato potáxico, plagioclase y muscovita; como accesorios participan espodumeno, ambilagonita, berilo, litiofilita, minerales del grupo de la columbita y bismutinita. El cuarzo se presenta en masas irregulares blancas o grisáceas, menos comúnmente incoloras o ahumadas. El feldespato potáxico es microclino pertítico de color blanco grisáceo o rosado. La plagioclase es albita o su variedad laminar clevelandita. Está bien distribuida aunque no alcanza concentraciones muy importantes, y también forma venillas transgresivas. La muscovita ocurre como láminas en la zona externa y además en nódulos de mica amarillenta en láminas de pocos centímetros de diámetro o como...
muscovita verdosa de grano fino. El espodumen se presenta en cristales idiomorfo y prismáticos que pueden alcanzar 4 m de largo pero generalmente son de 0, 50 a 0, 70 m de longitud.

Datos Económicos: El distrito pegmatítico Conlara ha tenido y mantiene una importante producción de minerales, condicionada a la demanda del mercado. Los recursos de minerales de litio, berilo, feldespato potásico, albita y cuarzo son considerables pero a la fecha no hay un estudio que haya cuantificado su potencial.

El sistema de explotación predominante es en canteras a cielo abierto y sólo en contadas ocasiones se han realizado laboreos subterráneos de desarrollo limitado (por ejemplo, en Las Cuevas y Géminis). Explotación está semimecanizada y la selección del material se produce generalmente in situ por métodos artesanales.

El espodumen tiene tenores de Li2O que oscilan entre 4, 20 y 5% y se han estimado reservas litíferas totales de 25363 toneladas.

Los datos económicos muestran que el distrito Conlara ha tenido una importante producción de minerales, condicionada a la demanda del mercado. Los recursos de minerales de litio, berilo, feldespato potásico, albita y cuarzo son considerables pero a la fecha no hay un estudio que haya cuantificado su potencial.

La fluorita es maciza a granulada, con grano fino a grueso y tiene colores violeta, blanco, verde, amarillo, azul, negro e incoloro, según el orden de abundancia. La ganga está conformada por calciodona, cuarzo, ópalo, arcillas, caolín, pirita y óxidos de hierro y manganeso.

Datos Económicos: El distrito pegmatítico Conlara ha tenido y mantiene una importante producción de minerales, condicionada a la demanda del mercado. Los recursos de minerales de litio, berilo, feldespato potásico, albita y cuarzo son considerables pero a la fecha no hay un estudio que haya cuantificado su potencial.

El sistema de explotación predominante es en canteras a cielo abierto y sólo en contadas ocasiones se han realizado laboreos subterráneos de desarrollo limitado (por ejemplo, en Las Cuevas y Géminis). Explotación está semimecanizada y la selección del material se produce generalmente in situ por métodos artesanales.

El espodumen tiene tenores de Li2O que oscilan entre 4, 20 y 5% y se han estimado reservas litíferas totales de 25363 toneladas.

Las pegmatitas berilíferas, entre las que se destacan las minas Amanda, Las Masas y Cautana, habrían producido unos 3000 kilos de berilo (informe de los propietarios).

Fluorita

Distrito Cerros Negros

Los depósitos de fluorita están distribuidos a lo largo de la zona de borde del batolito Cerro Áspero, en la proximidad del contacto con la caja metamórfica. Los principales depósitos del distrito son Los Cerros Negros, La Bubú, Francisco, La Saida, La Estela, Santa María, San Basilio, San Guillermo, 31 de Julio, Ubaldina, La Cabecita, Carlos y El Pantanillo.

Los yacimientos de fluorita (CaF₂) son vetas que ocupan estructuras subverticales escalonadas de rumbo NE, EO y NO, con zonas mineralizadas que alcanzan longitudes entre 25 y 600 m y potencias que varían desde los pocos cm hasta 12 metros. En la mina Los Cerros Negros el laboreo subterráneo ha expuesto vetas hasta los 70 m de profundidad, mientras que las perforaciones de exploración han revelado que la mineralización continúa hasta los 200 m de profundidad.

La fluorita es maciza a granulada, con grano fino a grueso y tiene colores violeta, blanco, verde, amarillo, azul, negro e incoloro, según el orden de abundancia. La ganga está conformada por calciodona, cuarzo, ópalo, arcillas, caolín, pirita y óxidos de hierro y manganeso.

Las vetas cortan el monzogranito biotítico-porfírico del Complejo Magmático Cerro Áspero. Este granito es particularmente rico en flúor, con 1210 ppm de contenido medio. En las zonas de fractura, la destrucción de biotita y fluorapatita por los procesos de alteración hidrotermal habría generado las venas de fluorita epitermal (Coniglio et al., 2006). Las fallas presentan estructuras brechadas y cementadas con fluorita, calciodona y ópalo, con cantidades subordinadas de pirita, coffinita (U(SiO₄)₁₋ₓ(OH)₄ₓ), y pechblenda (UO₂); muestran texturas bandeadas, cocarda, crustiformes y coloformes, típicas de relleño de cavidades. La fluorita negra está asociada con minerales de uranio (pechblenda y secundarios); variedad particularmente abundante en la mina La Estela.

La alteración hidrotermal producida por las vetas en la caja granítica alcanza hasta 10 metros. La alteración es argilica, con caolinita generalmente asociada con alteración silílica premineral y montmorillonita e illita formadas durante la deposición de fluorita (Coniglio, 1993).

Se han reconocido tres pulsos de mineralización con temperaturas de 160, 136 y 116ºC, como resultado de un proceso hidrotermal único (Coniglio et al., 2000). Los altos valores de U, Th y K contenidos en el granito sugieren la posibilidad de que el calor radiogénico haya sido el motor de la convección de los fluidos hidrotermales, mecanismo sugerido por Sallet et al. (1996) para yacimientos de fluorita similares en Brasil. Los yacimientos de fluorita con minerales de uranio de las sierras de Córdoba se habrían formado durante el Cretácico inferior. Galindo et al. (1996) determinaron en fluorita edades Sm/Nd de 131 ± 22 Ma (mina La Nueva, distrito Cabalango, Córdoba) y de 117 ± 26 Ma (grupo Bubú, distrito Cerro Áspero).

Las reservas estimadas para los yacimientos del distrito ascienden a 600000 t de fluorita (Menoyo y Bonalumi, 1975). La producción mayor ha sido obtenida de las minas Los Cerros Negros y La Bubú, siguiendo en importancia las minas La Saida y Francisco. Al presente el único depósito explotado es Los Cerros Negros, con reservas calculadas en 270000 t con una ley media de 56% de CaF₂.
6.3 ROCAS DE APLICACIÓN

Granitos

La explotación de granito como roca ornamental es muy importante en la provincia de San Luis, que es la primera productora del país de granito en bloque. Las canteras más relevantes están localizadas en los granitos de Potrerillos y Renca.

Zona Potrerillos (San Luis)

El granito se presenta en variedades comercialmente denominadas rosa del salto, gris perla y rojo dragón. La primera presenta una coloración rosada y textura granular gruesa. La segunda variedad posee una coloración gris y textura granular gruesa. La variedad rojo dragón es la más importante gracias a su amplia aceptación en el mercado nacional e internacional. El granito varía de rosado intenso a rojo intenso, su textura es equigranular con un tamaño de grano no superior al centímetro de diámetro.

Zona Renca (San Luis)

El granito se comercializa como la variedad San Felipe. Presenta una coloración entre beige y gris, con gran contenido de fenocristales de feldespato potásico, con cristales de hasta 6 cm de largo.

En unas lomadas de la sierra de Tilisarao aflora un granito equigranular de color gris compuesto por cuarzo, plagioclasa y biotita, que se ha explotado con el nombre comercial de granito San Luis.

Yacanto de Calamuchita (Córdoba)

Al sur de Suya Taco se ha explotado una anatexita tonalítica con cordierita y granate almandino (kinzigita), que se ha comercializado con el nombre comercial de granito Azul Tango.

El color azul está dado por la cordierita que contrasta fuertemente con el rojo del granate. Presenta una estructura bandead. La cantera ha sido trabajada varios años y a la fecha está abandonada, principalmente por las dificultades de obtener bloques de tamaño comercial.

Granitos negros (gabros)

Canteras Champaquí y Bianco (Córdoba)

El material explotado corresponde al gabro que aflora al norte del río Calamuchita, entre el convento de Lourdes y el balneario Miami. Se accede al yacimiento por el camino que, desde Santa Rosa de Calamuchita, conduce a Yacanto y luego hacia el norte por un camino de tierra que cruza un vado y lleva a la zona de las canteras.

Ocho frentes de cantera se distribuyen a lo largo del cuerpo de gabro, comenzando desde el sur con el grupo Bianco y siguiendo al NO con el grupo Champaquí y la cantera El Algarrobo.

El material explotable es un gabro norítico con intercalaciones de gabro norítico hornblendífero. El material tiene una granulometría media a gruesa y no es totalmente homogéneo ya que posee cierta orientación mineral y suele tener concentraciones de minerales más claros que le dan un aspecto nuboso.

En otras canteras (grupo Bianco) se extraen gabros cuarzo noríticos. Los gabros son fácilmente explotables ya que no poseen «lisos» que perjudicarían la conformación de bloques.

Canteras Suya Taco (Córdoba)

El cuerpo gábrico de Suya Taco se ha explotado en 12 canteras de pequeñas dimensiones que han producido bloques de hasta 8 m³. La roca es un gabro muy fresco de composición hipersténico-hornblendífera, con granito en algunos sectores.

Mármol

Distrito Cañada de Álvarez

El distrito está ubicado al este del paraje Cañada de Álvarez, a unos 15 km al norte de la localidad de Río de Los Sauces. Allí afloran bancos de mármol que forman un gran pliegue sinforme a lo largo de unos 6 km y alineado con rumbo NO, que cierra hacia el norte. Los bancos de mármol, junto con septos de gneis y anfibolita, alcanzan hasta 600 m de espesor.

Los mármoles del distrito tienen composición dolomítica. El material del sector norte es de granulometría fina a media y de tonalidades blanco amarillentas. Hacia el sur el mármol es de granulometría gruesa y de color blanco níveo a gris claro. Como accesorios se han reconocido minerales de cobre, como calcocina y malaquita.

Al presente, el distrito está en actividad y los materiales se emplean como granulados molidos y triturados pétreos, en las industrias del vidrio y de la cerámica y para metalurgia, pinturas, encalado de suelos, cal y ornamentación. Las reservas estimadas son: canteras Insumin 43165000 t; canteras Bonanza 1000000 t y canteras Centro Norte 10000000 t (Sfragulla et al., 1999).
Distrito Río de Los Sauces

Comprende una serie de yacimientos ubicados al noroeste de la localidad de Río de Los Sauces, que se extienden a lo largo de unos 20 km dentro de la estancia Los Cocos.

Se presentan como mantos subhorizontales de buen desarrollo. Sus coloraciones están en la gama de los grises, blancos y verdes. El material tiene una composición predominantemente dolomítica y con bajo tenor en insolubles. Hacia el extremo occidental del distrito, los mármoles son muy puros y blancos por lo cual se utilizan para la industria cerámica y del vidrio con muy buenos resultados. Los mármoles coloreados que tienen minerales como diópsido y olivino, son utilizados preferentemente como piedra ornamental, a partir de bloques blancos, grises y verdes (Sfragulla *et al.*, 1999).

Distrito Atos Pampa

Abarca varios cuerpos de mármol ubicados en los alrededores de Atos Pampa, al norte de Yacanto de Calamuchita, en el faldeo este de la sierra de Comechingones.

La cantera de mármol conocida como Cerro Azul se ha desarrollado sobre un banco de mármol de rumbo 340° que forma una estructura homoclinal que inclina entre 75° y 85° al NE y presenta una intensa deformación dúctil. Se extiende aproximadamente unos 250 m y tiene un espesor de 70 metros. Está intercalado con los gneises y anfibolitas del Complejo Metamórfico Comechingones. El material es un mármol dolomítico de granulometría media a fina. Los bancos son atravesados por filones, venas cuarzo turmalínicos que dan lugar a la formación de skarn. Presenta una zonación definida por variedades de color blanco, azul-verdoso, verde limón, rosa y gris. Sin embargo, dominan los colores azul y blanco; es intensamente azul en los núcleos de las estructuras plegadas.

Las reservas calculadas para el distrito suman 997000 t (Sfragulla *et al.*, 1999).

Distrito Achiras

Los yacimientos ubicados en el cerro El Moro, al sur de la sierra de Comechingones, son integrados en el denominado Distrito Achiras (Sfragulla *et al.*, 1999). Forman una serie de cuerpos plegados e interestratificados con gneises y esquistos milonitizados.

Los mármoles tienen composición predominantemente dolomítica, granulometría fina a media y sus coloraciones son grisáceas y localmente blanquecinas con tonos rosados. El yacimiento del cerro Moro tiene un laboreo de poca importancia y al presente se halla abandonado.

Distrito Sierra de la Estanzuela

Los principales yacimientos de mármol en la sierra de la Estanzuela corresponden a los denominados Cañada Grande, La Suiza, Geroe, La Marmolina, Salvaño y Chiesa.

Los bancos de mármol forman parte del Complejo Metamórfico Conlara, junto a gneises y esquistos, anfibolitas y numerosos filones pegmatíticos. Los bancos tienen varios cientos de metros de largo; su composición es dolomítica y en las zonas de contacto con rocas graníticas se ha formado wollastonita fibrosa y ópalo. Son rocas de grano grueso a sacaroide, de coloraciones blanco a grisáceo. El material dolomítico suele contener grafito y óxidos de hierro que tienan la roca.

Los contenidos de CO$_3$Ca son variables entre 50 y 75% y el CO$_3$Mg varía entre 25 y 45%. La SiO$_2$ es relativamente alta, con valores entre 6 y 13%.

Las reservas estimadas por distintos autores rondan las 8500000 toneladas. La producción entre los años 1990-96 fue de unas 90000 t entre calizas y dolomías. La explotación en todos los casos es por medio de canteras siguiendo el rumbo de los bancos (Beninato, 1999).

Sector Merlo y Cortaderas

Las canteras se ubican sobre el faldeo oeste de la sierra de Comechingones, entre Merlo y Las Cortaderas.

La cantera San Carlos se encuentra a unos 5 km al SE de Merlo, a 1100 m s.n.m. Allí se explotó un cuerpo de mármol que se calcinaba para la obtención de cal en hornos instalados en las inmediaciones de la localidad de Merlo. Allí se identificaron 3 bancos de mármol que se intercalan con esquistos y anfibolitas; el conjunto ha sido afectado por la deformación de la zona de cizalla produciendo laminación de los cuerpos. Los bancos tienen una posición subhorizonta con rumbo SSE, alcanzan longitudes de 400 m y espesores de 70 metros. La roca tiene granulometría media, coloración blanquece con fajas verdes debido a la presencia de epidoto, serpentina y diópsido. El yacimiento se explotó mediante un frente único, desprendiendo grandes bloques de material fácilmente con barretas, debido a las numerosas fisuras y planos de laminación que afectan a la roca (Beninato, 1999).

Según los mineros (señores Badra y Arias) a los hornos se transportaban unas 16 t/día de piedra. El producto se colocaba en la región, estimándose...
una producción de cal de 150 t/mes. Al presente la actividad está paralizada.

Más al sur, a 1, 6 km al NE de Cortaderas, en la cuesta homónima, aflora otro cuerpo subhorizontal constituido por varios bancos de mármol que alcanzan corridas de 1000 m y potencias de 100 m (Beninato, 1999).

Travertino y ónix calcáreo

Los depósitos hidrotermales de travertino y ónix calcáreo aparecen en los alrededores del cerro Tiporco. La zona es conocida por la Cantera Santa Isabel.

Aspectos geológicos y económicos de estos yacimientos han sido descritos por Kittl (1932) y Lacreu (1988, 1999). El ónix calcáreo forma mantos o venas que intruyen el basamento esquistoso o interestratificadas con los depósitos piroclásticos del Complejo Volcánico El Morro. Las venas están formadas por carbonatos color verde y marrón, drusas y cristalización tardía de aragonita y fluorita. Su génesis se relaciona con el relleno de fisuras dentro del sistema geotermal producto de las manifestaciones póstumas del vulcanismo andesítico terciario. El travertino forma generalmente un horizonte sólido (probablemente una paleo superficie) bien preservado al NO del cerro Tiporco. Está asociado también con ónix y aragonita (canteras El Manantial y Las Toscas).

La edad de la mineralización, de acuerdo con su carácter epigenético, sería plioceno-pleistoceno (Lacreu, 1988).

La zona es explotada desde fines del siglo XIX en forma casi ininterrumpida hasta el presente. Las mayores explotaciones fueron realizadas por la empresa Frizt y Cia., hasta la década de 1940 y luego por Verde Ónix SCA hasta 1987 cuando se transfirió el dominio al Banco de la Provincia de San Luis. Se han cubierto nuevas reservas por 114000 tone-ladas (Lacreu, 1982, 1999).

Calcáreos

Al oeste de Santa Rosa de Conlara, en el camino que conduce a Quines aflora un sedimento calcáreo que ha sido explotado para la fabricación de cal para uso local. Es un material impuro con alto contenido de sílice. Corresponde a bancos de calcretes de la Formación Paso de Las Carretas, de edad neógena.

No se dispone de datos de explotación ni de producción.

Arcillas

Las arcillas se extraen en diversos parajes de la zona, pero sólo en Barranca del Calvario y El Recuerdo hay explotaciones de cierta relevancia, siendo la última la más importante.

El yacimiento El Recuerdo está en el piedemonte occidental de la sierra de Comechingones, a 3 km al sur de la localidad de Papagallos. El acceso se realiza a partir del puesto Peralta, ubicado sobre la ruta provincial 1, desde donde se recorren 3 km por camino consolidado hasta arribar a la cantera de arcilla. La zona está afectada por la falla inversa que levantó el bloque de la sierra de Comechingones.

En la zona del yacimiento la falla ha fragmentado y alterado el Granito Uspara, formándose un material arcilloso con diferentes texturas y tonalidades (verde, rojo, blanquecino, amarillento). La roca original, que se reconoce en la brecha de falla expuesta en la zona de explotación, corresponde a un granito gris rosado de grano medio. El depósito está cubierto por un conglomerado que constituye el piedemonte serrano y forma lomadas bajas y suaves cubiertas por vegetación (Donnari *et al.*, 2011). La explotación comprende un frente de cantera de 7 m de altura, sin banqueos, con un desarrollo de 20 m en sentido N-S y de 60 m en sentido E-O. A la fecha es explotado por la empresa San Lorenzo para la fabricación de cerámicos.

En el cuadro 4 se brindan ensayos realizados sobre dos muestras de la mina El Recuerdo (Gaido, F., com. per.).

Según Donnari *et al.* (2011), algunos de los depósitos arcillosos constituyen las facies marginales de los abanicos aluviales coluviales de la sierra de Comechingones. Constituyen una secuencia heterogénea donde alternan bancos discontinuos de conglomerados macizos con bloques métricos y con intercalaciones arenosas conglomeráticas con abundante limo. Lateralmente estas últimas pasan a lentes arcillosos pardo rojizos que pueden tener extensiones excepcionales de hasta 30 m y espesores que no superan los 5 metros. De las cantes habilitadas en estos sedimentos se han extraido materiales tanto para la industria ladrillera cerámica como para la alfarería. A este ambiente pertenece el depósito conocido como Barranca del Calvario.

La arcilla se utiliza como materia prima para la fabricación de ladrillos, tejas y cerámicos. Una fábrica de tejas que aprovecha estos materiales se instaló en las afueras de Merlo en el camino que...
une esta localidad con Santa Rosa de Conlara. Otra, menos importante, se halla en La Población.

Piedra laja

Filitas Paso del Rey

En la zona de la hoja, las filitas de la Formación San Luis han sido explotadas en varias canteras localizadas en la proximidad de los parajes Paso del Rey y Santo Domingo. Muchas de ellas están abandonadas o fueron trabajadas irregularmente.

El plano de foliación vertical de la roca está cortado por un diaclasamiento horizontal que facilita la extracción de lajas. La filita es una roca de grano muy fino y contiene cristales de pirita diseminados. La coloración es gris acero con tonos verdoso-rojizos, con planos de brillo característico ocasionado por las hojuelas de sericita. La alternancia con sectores de rocas macizas cuarcíticas, que no ofrecen superficies de separación netas, hace que el rendimiento de la piedra aprovechable disminuya un 50% (Angelelli et al., 1980)

Las filitas son utilizadas como revestimientos de edificios y como lajas para pisos.

Laja Bajo de Véliz

Las sedimentitas de la sección superior de la Formación Bajo de Véliz han sido objeto de explotación. El material denominado comercialmente «pirarra» no responde estrictamente a esta clase de roca, ya que se trata de una lutita arenocarbonosa de color gris oscuro a negro, con planos de sedimentación típicos de una estructura várvica que facilitan la separación en planchas de tamaño variable.

La unidad sedimentaria presenta capas diferencialmente inclinadas sin alcanzar buzemientos pronunciados y su continuidad lateral se ve interrumpida por varias fallas de reducido rechazo. Esto último junto con la presencia de material sedimentario no apto y la cubierta aluvional cuaternaria, dificulta la explotación. Si bien las propiedades tecnológicas del material no son del todo favorables, en la cantera se han instalado grupos electrógenos y diversas máquinas cortadoras y pulidoras para la fabricación de planchas o tejas.

Arena, ripio y rodados

Estos materiales se extraen de varios ríos y parajes de la zona. En la vertiente oriental de la sierra de Comechingones, los tributarios más importantes (Tabaquillo, El Durazno) contienen en sus lechos apreciables cantidades de arena de excelente calidad, pero sólo se aprovechan localmente en la zona de Yacanto de Calamuchita. En el faldeo oeste de la misma sierra, en la zona de Merlo y Cortaderas, se extrae ripio y rodados del cono de deyerencia, que se usan en construcciones de la zona. Con un tratamiento de tamizado se podrían obtener estos materiales en cualquiera de los arroyos que bajan por la falda occidental de la sierra.

En la sierra de San Luis, en la zona de Rincón del Carmen, resultan de cierto interés los depósitos de la cuenca del arroyo Cabeza de Novillo. En el faldeo occidental también se explotan los depósitos de piedemonte, como en las proximidades de la estancia Santa Catalina, al sur de Quines.

7. SITIOS DE INTERÉS GEOLÓGICO

Zona de cizalla Tres Árboles

En el sitio se puede apreciar una ancha faja de deformación que pone en contacto dos terrenos geológicos: el basamento pampeano cámbrico y el basamento famatiniano ordovícico. La zona de cizalla Tres Árboles es una de las más impresionantes zonas de deformación de la corteza terrestre que puede observarse en ciertas sierras de Córdoba. Esta zona también ha jugado un importante rol en el emplazamiento de la gran masa granítica del batolito de Achala.

La transecta por el camino a Los Linderos desde Yacanto de Calamuchita, o por el camino que conecta Luti con Merlo, da la oportunidad de hacer excelentes observaciones tectónico-petrológicas. La belleza de sus paisajes y el desafío de la llegada a la cumbre hacen que este lugar sea un paseo casi obli-

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Esmectita</th>
<th>Illita</th>
<th>Caolinita</th>
<th>Cuarzo</th>
<th>Feldespato</th>
<th>Plagioclases</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>021A El recuerdo</td>
<td>0</td>
<td>56.89</td>
<td>0</td>
<td>36.93</td>
<td>6.18</td>
<td>10.84</td>
<td>66.15</td>
<td>17.84</td>
<td>1.29</td>
<td>4.74</td>
<td>6.03</td>
</tr>
<tr>
<td>021B El recuerdo</td>
<td>14.96</td>
<td>46.51</td>
<td>0</td>
<td>19.75</td>
<td>9.40</td>
<td>9.38</td>
<td>64.15</td>
<td>18.84</td>
<td>1.29</td>
<td>4.74</td>
<td>6.03</td>
</tr>
</tbody>
</table>

Cuadro 4: Análisis químicos de arcillas de la mina El Recuerdo (en %)
Villa de Merlo
gatorio para los amantes del turismo de aventura (Candiani, 2008).

San Virgilio

La mina San Virgilio forma parte del distrito minero Cerro Áspero. Numerosas minas del distrito fueron trabajadas para la extracción de wolframita, principalmente durante ambas guerras mundiales, con un importante desarrollo de minería subterránea. El distrito está localizado en el extremo norte del Batolito Cerro Áspero, ubicado en la sierra de Comechingones. La mineralización se presenta en vetas y brechas que cortan la roca granítica. El distrito está localizado en el extremo norte del Batolito Cerro Áspero, ubicado en la sierra de Comechingones. La mineralización se presenta en vetas y brechas que cortan la roca granítica. Al presente la actividad extractiva está paralizada.

El distrito es objeto de frecuentes estudios sobre metalogénesis. El lugar tiene además un fuerte atractivo para actividades de montañismo y turismo minero.

Bajo de Véliz

El contenido fosilífero de los depósitos glacilacustres de la Formación Bajo de Véliz (tafoflora, microflora fósil, artropofauna) ha permitido asignar una edad carbonífero-pérmica a los afloramientos preservados en este sitio y correlacionarlos con los del Grupo Paganzo aflorantes en una amplia zona del centro oeste del país.

Cañada Honda

Dentro de la Formación San Luis, la unidad conocida como Metaconglomerado de Cañada Honda preserva los rasgos sedimentarios originales. Los bancos, que alcanzan potencias de hasta 100 m, están formados por clastos angulosos de tamaño centimétrico, compuestos por metacuarcitas, filitas y rocas metavolcánicas, inmersos en una matriz de grano fino a grueso (figura 12). En estas rocas puede observarse la estratificación original del sedimento a la que se sobreimpone en forma paralela una foliación milonítica anastomosada. La mayoría de los clastos de cuarcita están recristalizados. La foliación milonítica está cortada subparalelamente por un clivaje que dio como resultado una superficie de crenulación.

Falla Calamuchita

La falla de la Sierra Chica se extiende a lo largo de 200 kilómetros y constituye el frente de levantamiento de la Sierra Chica. En la zona de Santa Rosa de Calamuchita, en la ruta provincial 51 (coordenadas 64°32’18.949”O 32°3’33.168”S), una cantera donde se han extraído áridos permite observar como la falla inversa pone en contacto gneises cámbricos sobre sedimentos cuaternarios (figura 36). El plano de falla tiene un rumbo N-S e inclina 50º al este y se han medido desplazamientos de al menos 12 metros. Estas relaciones ponen en evidencia los movimientos que la falla ha experimentado en el Cuaternario.

Estancia La Suiza

La localidad arqueológica denominada Estancia La Suiza se encuentra ubicada en las cercanías del arroyo El Carrizal, en la sierra de la Estanzuela, provincia de San Luis. La importancia del lugar consiste en el hallazgo de fragmentos de puntas de proyectil tipo «cola de pescado» que habrían utilizado los grupos cazadores-recolectores en un poblamiento inicial de la región. Aunque no se cuenta con fechados radiocarbónicos en esta localidad, estas puntas en otros sitios de Sudamérica indican una cronología que varía entre 10000 y 11000 años antes del presente (Laguens et al., 2007).

La roca utilizada para la confección de estas puntas y otros instrumentos líticos es una brecha sílica, cuyos afloramientos se encuentran en el área. Por lo tanto, se descartaría la posibilidad de que estos artefactos hallan sido transportados desde lugares más lejanos, lo que conduce a generar nuevas hipótesis respecto al poblamiento inicial de la región.

Canteras Santa Isabel

Se trata de un yacimiento de mármol ónice que se conoce desde fines del siglo XIX. Son depósitos hidrotermales con travertino y ónice calcáreo que aparecen en los alrededores del cerro Tiporco (coordenadas 65°48’36.233”O, 32°56’45.896”S). El ónice cálcico forma venas de alrededor de 2 m de ancho que intruyen el basamento esquistoso y está interesratificado con los depósitos pirolácticos. Las venas están formadas por carbonatos color verde y marrón, drusas y cristalización tardía de aragonita y fluorita.

Gran parte del material explotado en este yacimiento es procesado y comercializado en la localidad de La Toma (San Luis).

Yacimiento Los Cóndores

El yacimiento de wolframio Los Cóndores fue descubierto en 1897 y fue uno de los más impor-
tantes que se explotaron durante la primera guerra mundial. Está situado a unos kilómetros al oeste de la ciudad de Concarán, en la provincia de San Luis. Sus coordenadas son 65°19’18.8”O, 32°34’22.746”S.

Está formado por vetas de cuarzo alojadas en los esquistos del Complejo Metamórfico Conlara, junto con pegmatitas y diques graníticos. Ocupan estructuras verticales de rumbo NE, con potencias entre 0.3 y 3 metros. La wolframita se presenta en cristales tabulares aislados, de tamaños que van desde microscópicos hasta 10 cm de largo o formando «nidos». También aparece scheelita asociada a cuarzo, mica y wolframita.

BIBLIOGRAFÍA

CAYO, R., 1951. Estudio geológico minero del distrito cuprífero del departamento Calamuchita en la provincia de Córdoba. Universidad Nacional de La Plata, tesis doctoral 175, 70 p, inédito. La Plata.

GALLISKI, M.A., 1992. La Provincia Pegmatítica Pampeana: tipología y distribución de sus principales distritos económicos. 4º Congreso Nacional y 1º Congreso Latinoamericano de Geología Económica, 4: 534-537

GAY , H., R. LIRA, E. MARTINEZ y J. SFRAGULLA, 1984. Hallazgo de clinobisvanita y duhamelita: nuevos vanadatos para la Argentina en la provincia de Cór-
doba. 2da Reunión de Mineralogía y Metalogenia: 141-146. La Plata.

GORDILLO, C. E., 1972. Petrografía y composición química de los basaltos de la sierra de Las Quijadas (San Luis) y su relación con los basaltos cretácicos de Córdoba. Boletín de la Asociación Geológica de Córdoba, I: 127-129.

GROMET, L.P., C. SIMPSON, R. MIRO y S.J. WHITMEYER, 2001. Apparent truncation and

HÜNICKEN, M. A. y M.V. PENSA, 1977. La secuencia sedimentaria del borde occidental de la sierra de Pocho (Chancani), Córdoba. IUGS-UNESCO. Project. Nº42, Upper Paleozoic of South America, Bol. 2: 10 p.

LLAMBÍAS, E.J. y L. MALVICINI, 1982. Geología y génesis de los yacimientos de tungsteno de las Sierras...
del Morro, Los Morrillos y Yulto, provincia de San Luis. Revista de la Asociación Geológica Argentina, 37: 100-143.

MUTTI, D., 1987. Estudio geológico del complejo gabro-peridotítico de la región del Bosque Alegre. Tesis Doc-

RIGAL, R., 1938. Las minas de columbita y tantalita y el descubrimiento de minerales de uranio radiactivos en la Cañada de Álvarez, departamento Calamuchita, Córdoba. Dirección Nacional de Minería, Boletín 45. Buenos Aires.

ROSSI, N., 1966a. Descripción geológica de la Hoja 23 h, Sierras de la Estanzuela-la, provincias de Córdoba y...

<table>
<thead>
<tr>
<th>ID</th>
<th>SUSTANCIA</th>
<th>NOMBRE</th>
<th>LAT</th>
<th>LON</th>
<th>LOCALIDAD</th>
<th>LITOLOGIA</th>
<th>UNIDAD</th>
<th>EDAD</th>
<th>MINERALOGIA</th>
<th>LABORES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cr</td>
<td>Athos Pampa Laura</td>
<td>-32.0028699°</td>
<td>-64.7309230°</td>
<td>Yacanto de Calamuchita</td>
<td>Ullabásicas</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td>Comita, magnetita, hematita, ilmenita y calcopirita</td>
<td>Cielo abierto</td>
</tr>
<tr>
<td>2</td>
<td>Gr</td>
<td>Suya Taco</td>
<td>-32.0153064°</td>
<td>-64.7003846°</td>
<td>Yacanto de Calamuchita</td>
<td>Gabros</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td></td>
<td>Canteras</td>
</tr>
<tr>
<td>3</td>
<td>Gr</td>
<td>Champaqui Y Algarrobo</td>
<td>-32.0333499°</td>
<td>-64.6161789°</td>
<td>Calamuchita</td>
<td>Gabro</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td></td>
<td>Canteras</td>
</tr>
<tr>
<td>4</td>
<td>Gr</td>
<td>Canteras Blanco</td>
<td>-32.0400089°</td>
<td>-64.6142679°</td>
<td>Calamuchita</td>
<td>Gabro</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td></td>
<td>Canteras</td>
</tr>
<tr>
<td>5</td>
<td>Gr</td>
<td>Magdalena Victoria</td>
<td>-32.0417519°</td>
<td>-64.7268049°</td>
<td>Yacanto de Calamuchita</td>
<td>Kinzigita</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td></td>
<td>Canteras</td>
</tr>
<tr>
<td>6</td>
<td>Cu</td>
<td>Co Azul</td>
<td>-32.0493681°</td>
<td>-64.7005551°</td>
<td>Yacanto de Calamuchita</td>
<td>Mármol</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td>Calcosina, covelina, malaquita, azurita</td>
<td>Manifestación</td>
</tr>
<tr>
<td>7</td>
<td>Mbl</td>
<td>Co Azul</td>
<td>-32.0521902°</td>
<td>-64.7026993°</td>
<td>Yacanto de Calamuchita</td>
<td>Mármol</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td></td>
<td>Canteras</td>
</tr>
<tr>
<td>8</td>
<td>Qz Fel</td>
<td>Noris</td>
<td>-32.0537109°</td>
<td>-65.0245679°</td>
<td>La Población</td>
<td>Pegmatita</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td>Cuarzo, feldespato</td>
<td>Canteras</td>
</tr>
<tr>
<td>9</td>
<td>Li</td>
<td>La Juana</td>
<td>-32.0550931°</td>
<td>-65.0290390°</td>
<td>La Población</td>
<td>Pegmatita</td>
<td>Complejo Granítico de Achala</td>
<td>Devónico</td>
<td>clevelandita, lepidolita, topacio</td>
<td>Canteras</td>
</tr>
<tr>
<td>10</td>
<td>Mica</td>
<td>Lourdes</td>
<td>-32.0732897°</td>
<td>-64.9372010°</td>
<td>Yacanto de Calamuchita</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Ordovícico</td>
<td>Cuarzo, feldespato, mica, berilo</td>
<td>Canteras y galerías</td>
</tr>
<tr>
<td>11</td>
<td>Qz</td>
<td>La Lomita</td>
<td>-32.0872134°</td>
<td>-65.0268162°</td>
<td>Luyaba</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Ordovícico</td>
<td>Cuarzo, feldespato</td>
<td>Canteras</td>
</tr>
<tr>
<td>12</td>
<td>Be Qz Fel</td>
<td>Aida</td>
<td>-32.1086799°</td>
<td>-64.8581810°</td>
<td>Yacanto de Calamuchita</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Ordovícico</td>
<td>Cuarzo, feldespato, mica, berilo</td>
<td>Canteras y galerías</td>
</tr>
<tr>
<td>13</td>
<td>Mica</td>
<td>Cerro Blanco</td>
<td>-32.1119729°</td>
<td>-64.9254169°</td>
<td>Yacanto de Calamuchita</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Ordovícico</td>
<td>Cuarzo, feldespato, mica, berilo</td>
<td>Canteras y galerías</td>
</tr>
<tr>
<td>14</td>
<td>Mica</td>
<td>La Tera</td>
<td>-32.1283399°</td>
<td>-64.5739530°</td>
<td>Amboy</td>
<td>Pegmatita</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td>Cuarzo, muscovita</td>
<td>Canteras</td>
</tr>
<tr>
<td>15</td>
<td>Be Fel Qz</td>
<td>1ro De Julio</td>
<td>-32.1430539°</td>
<td>-64.9784798°</td>
<td>Luyaba</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Ordovícico</td>
<td>Cuarzo, feldespato, berilo</td>
<td>Canteras</td>
</tr>
<tr>
<td>16</td>
<td>Qz</td>
<td>2 de Abril</td>
<td>-32.1431359°</td>
<td>-64.9865219°</td>
<td>Luyaba</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Ordovícico</td>
<td>Cuarzo, feldespato</td>
<td>Canteras</td>
</tr>
<tr>
<td>17</td>
<td>Be</td>
<td>Eduardo</td>
<td>-32.1587669°</td>
<td>-64.8628569°</td>
<td>Yacanto de Calamuchita</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Ordovícico</td>
<td>Cuarzo, feldespato, mica, berilo</td>
<td>Canteras y galerías</td>
</tr>
<tr>
<td>Hoja Geológica 3366-II</td>
<td>64.865690°</td>
<td>64.865690°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Be</td>
<td>La Mojanda, Vitoria</td>
<td>La Mojanda, Vitoria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Be</td>
<td>Los Guzmanos Oeste</td>
<td>Los Guzmanos Oeste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 Li</td>
<td>Los Guzmanos</td>
<td>Los Guzmanos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 Fe</td>
<td>Pertenecen a la Guadarrama</td>
<td>Pertenecen a la Guadarrama</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23 Fe</td>
<td>Pertenecen a la Guadarrama</td>
<td>Pertenecen a la Guadarrama</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Fe</td>
<td>Pertenecen a la Guadarrama</td>
<td>Pertenecen a la Guadarrama</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 Li</td>
<td>Doña Julia</td>
<td>Doña Julia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 W</td>
<td>Pz.Ag Cu</td>
<td>Pz.Ag Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 W</td>
<td>Pz.Ag Cu</td>
<td>Pz.Ag Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 W</td>
<td>Pz.Ag Cu</td>
<td>Pz.Ag Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 W</td>
<td>Pz.Ag Cu</td>
<td>Pz.Ag Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 W</td>
<td>Pz.Ag Cu</td>
<td>Pz.Ag Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 W</td>
<td>Pz.Ag Cu</td>
<td>Pz.Ag Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 W</td>
<td>Pz.Ag Cu</td>
<td>Pz.Ag Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 W</td>
<td>Zonas Aredes</td>
<td>Zonas Aredes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34 W</td>
<td>Zonas Aredes</td>
<td>Zonas Aredes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 W</td>
<td>Muriel</td>
<td>Muriel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Provincia</td>
<td>Localidad</td>
<td>Latitud</td>
<td>Longitud</td>
<td>Tipo Geológico</td>
<td>Formación</td>
<td>Edad Geológica</td>
<td>Color / Propiedades</td>
<td>Uso</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>---------------------------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Verm</td>
<td>Los Penachos</td>
<td>-32.2396169°</td>
<td>64.6524898°</td>
<td>Gneises</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td>Vermiculita</td>
<td>Canteras</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Col Tan Mica</td>
<td>Angel</td>
<td>-32.3048589°</td>
<td>64.9147050°</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Ordovícico</td>
<td>Cuarzo, feldespato, mica, berilo</td>
<td>Canteras y galerías</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>W</td>
<td>San Benito</td>
<td>-32.3059849°</td>
<td>65.2568309°</td>
<td>Esquistos</td>
<td>Complejo Conlara</td>
<td>Ordovícico</td>
<td>Wolfamita y sheilita</td>
<td>Rjos</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Pb Zn Ag Cu</td>
<td>El Tala</td>
<td>-32.3076369°</td>
<td>65.4461459°</td>
<td>Esquistos y gneises</td>
<td>Complejo Conlara</td>
<td>Ordovícico</td>
<td>esferita, galena, pirita, calcopirita, marcasita</td>
<td>Piqües y galerías</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Pb Zn Ag Cu</td>
<td>SN</td>
<td>-32.3083249°</td>
<td>65.5443570°</td>
<td>Esquistos y gneises</td>
<td>Complejo Conlara</td>
<td>Ordovícico</td>
<td>esferita, galena, pirita, calcopirita, marcasita</td>
<td>Piqües y galerías</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Qz</td>
<td>Blanca Rosa</td>
<td>-32.3102209°</td>
<td>65.0098199°</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Ordovícico</td>
<td>Cuarzo, feldespato</td>
<td>Canteras</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Verm</td>
<td>Tigre Muerto</td>
<td>-32.3154079°</td>
<td>65.6119080°</td>
<td>Gneises</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td>Vermiculita</td>
<td>Canteras</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Pb Zn Ag Cu</td>
<td>El Cerrito</td>
<td>-32.3221499°</td>
<td>65.5835860°</td>
<td>Esquistos y gneises</td>
<td>Complejo Conlara</td>
<td>Ordovícico</td>
<td>esferita, galena, pirita, calcopirita, marcasita</td>
<td>Piqües y galerías</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Cu</td>
<td>La Estrella o Estrella Gaucha</td>
<td>-32.3224199°</td>
<td>65.5217514°</td>
<td>Anfibolita</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td>Pirita, calcopirita ox de Cu</td>
<td>Exploración</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Fe Cr Verm</td>
<td>Arbol Seco</td>
<td>-32.3300159°</td>
<td>65.5479679°</td>
<td>Ultrabásicas</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td>Cristita, magnetita, hematita, ilmenita y calcopirita</td>
<td>Cielo abierto</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>W</td>
<td>SN</td>
<td>-32.3310799°</td>
<td>65.7938900°</td>
<td>Granito</td>
<td>Granito Telarillo</td>
<td>Devónico</td>
<td>Wolfamita</td>
<td>Manifestación</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Pb Zn Ag Cu</td>
<td>Las Pedraces</td>
<td>-32.3311419°</td>
<td>65.4569379°</td>
<td>Esquistos y gneises</td>
<td>Complejo Conlara</td>
<td>Ordovícico</td>
<td>esferita, galena, pirita, calcopirita, marcasita</td>
<td>Piqües y galerías</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>U</td>
<td>SN</td>
<td>-32.3361586°</td>
<td>65.2379320°</td>
<td>Calcrete</td>
<td>Fm Paso de Las Carretas</td>
<td>Neógeno</td>
<td>Oxidos de uranio</td>
<td>Manifestación</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Caliza</td>
<td>SN</td>
<td>-32.3400497°</td>
<td>65.2300398°</td>
<td>Calcrete</td>
<td>Fm Paso de Las Carretas</td>
<td>Neógeno</td>
<td></td>
<td>Cantera</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>W</td>
<td>SN</td>
<td>-32.3418629°</td>
<td>65.6902320°</td>
<td>Granito</td>
<td>Granito Homillo</td>
<td>Devónico</td>
<td>Wolfamita</td>
<td>Manifestación</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Pb Zn Ag Cu</td>
<td>SN</td>
<td>-32.3477289°</td>
<td>65.5572630°</td>
<td>Esquistos y gneises</td>
<td>Complejo Conlara</td>
<td>Ordovícico</td>
<td>esferita, galena, pirita, calcopirita, marcasita</td>
<td>Piqües y galerías</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>W</td>
<td>Los Piquillines</td>
<td>-32.3480555°</td>
<td>65.7516668°</td>
<td>Pio Ponce</td>
<td>Plutón El Homillo</td>
<td>Devónico</td>
<td>Sheilita en vn de qz Kfs y tourm</td>
<td>Rjos y piqües</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Pb Zn Ag Cu</td>
<td>Piedras Bayas</td>
<td>-32.3486869°</td>
<td>65.4418649°</td>
<td>Esquistos y gneises</td>
<td>Complejo Conlara</td>
<td>Ordovícico</td>
<td>esferita, galena, pirita, calcopirita, marcasita</td>
<td>Piqües y galerías</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Qz</td>
<td>Puerta Verde</td>
<td>-32.3525789°</td>
<td>65.9077090°</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Ordovícico</td>
<td>Cuarzo, feldespato, mica, berilo</td>
<td>Canteras y galerías</td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>La Elia</td>
<td>La Fortuna</td>
<td>La Nelly</td>
<td>La Urraca</td>
<td>Las Aguadas</td>
<td>Manifestación</td>
<td>Esquistos y greses</td>
<td>Complejo Concha</td>
<td>Píqueres y galletas</td>
<td>Complejo Concha</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>55</td>
<td>Pb-Zn-Ag-Cu</td>
<td>Pb-Zn-Ag-Cu</td>
<td>Pb-Zn-Ag-Cu</td>
<td>Píqueres y galletas</td>
<td>Complejo Concha</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>56</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>57</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>58</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>59</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>60</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>61</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>62</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>63</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>64</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>65</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>66</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>67</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>68</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>69</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>70</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>71</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>72</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>73</td>
<td>Píqueres y galletas</td>
</tr>
<tr>
<td>Núm.</td>
<td>Tipo</td>
<td>SN</td>
<td>Latitud</td>
<td>Longitud</td>
<td>Comunidad o Localidad</td>
<td>Localidad</td>
<td>Edad Geológica</td>
<td>Tamaño de la Minera</td>
<td>Características</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Fl</td>
<td>-32.3985279°</td>
<td>-65.7965510°</td>
<td>Potro de las Mulas</td>
<td>Gneis</td>
<td>Complejo Pringles</td>
<td>Orдовико</td>
<td>Fluorita</td>
<td>Manifestación</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Pb Zn Ag Cu</td>
<td>La Sala</td>
<td>-32.4013759°</td>
<td>-65.5015099°</td>
<td>Las Aguadas</td>
<td>Esquistos y gneises</td>
<td>Complejo Conlara</td>
<td>Orдовико</td>
<td>esferita, galena, pirita, calcopirita, marcasita</td>
<td>Piques y galerías</td>
</tr>
<tr>
<td>76</td>
<td>Qz</td>
<td>Otro Ix</td>
<td>-32.4020359°</td>
<td>-64.8707540°</td>
<td>Yacinto de Calamuchita</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Orдовико</td>
<td>Cuarzo, feldespato, mica, berilo</td>
<td>Canteras y galerías</td>
</tr>
<tr>
<td>77</td>
<td>Qz</td>
<td>Corazon De Jesus</td>
<td>-32.4030279°</td>
<td>-64.7939069°</td>
<td>Yacinto de Calamuchita</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Orдовико</td>
<td>Cuarzo, feldespato, mica, berilo</td>
<td>Canteras y galerías</td>
</tr>
<tr>
<td>78</td>
<td>Qz</td>
<td>Otro VIII</td>
<td>-32.4032069°</td>
<td>-64.8487480°</td>
<td>Yacinto de Calamuchita</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Orдовико</td>
<td>Cuarzo, feldespato, mica, berilo</td>
<td>Canteras y galerías</td>
</tr>
<tr>
<td>79</td>
<td>Fl</td>
<td>San Cayetano</td>
<td>-32.4111829°</td>
<td>-64.9070029°</td>
<td>Yacinto de Calamuchita</td>
<td>Veta hidrotermal</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajo y galerías</td>
</tr>
<tr>
<td>80</td>
<td>Pb Zn Ag Cu</td>
<td>San Fernando</td>
<td>-32.4119619°</td>
<td>-65.4767519°</td>
<td>Las Aguadas</td>
<td>Esquistos y gneises</td>
<td>Complejo Conlara</td>
<td>Orдовико</td>
<td>esferita, galena, pirita, calcopirita, marcasita</td>
<td>Piques y galerías</td>
</tr>
<tr>
<td>81</td>
<td>Pb Zn Ag Cu</td>
<td>El Salado</td>
<td>-32.4207009°</td>
<td>-65.4514830°</td>
<td>Las Aguadas</td>
<td>Esquistos y gneises</td>
<td>Complejo Conlara</td>
<td>Orдовико</td>
<td>esferita, galena, pirita, calcopirita, marcasita</td>
<td>Piques y galerías</td>
</tr>
<tr>
<td>82</td>
<td>W</td>
<td>Progreso</td>
<td>-32.4244169°</td>
<td>-64.8738869°</td>
<td>Rio de Los Sauces</td>
<td>Granito</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Wolfanita</td>
<td>Subterránea y a cielo abierto</td>
</tr>
<tr>
<td>83</td>
<td>Qz</td>
<td>Otro XI</td>
<td>-32.4271149°</td>
<td>-64.8842189°</td>
<td>Co Áspero</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Orдовико</td>
<td>Cuarzo</td>
<td>Canteras</td>
</tr>
<tr>
<td>84</td>
<td>Qz</td>
<td>Otro XII</td>
<td>-32.4271149°</td>
<td>-64.8842189°</td>
<td>Co Áspero</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Orдовико</td>
<td>Cuarzo</td>
<td>Canteras</td>
</tr>
<tr>
<td>85</td>
<td>W</td>
<td>Cerro Áspero</td>
<td>-32.4273599°</td>
<td>-64.8744130°</td>
<td>Rio de Los Sauces</td>
<td>Granito</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Wolfanita</td>
<td>Subterránea y a cielo abierto</td>
</tr>
<tr>
<td>86</td>
<td>Cr</td>
<td>12 de Noviembre</td>
<td>-32.4276232°</td>
<td>-65.6050028°</td>
<td>Rio de Los Sauces</td>
<td>Ultrabásicas</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td>Cromita, magnetita, hematita, ilmenita y calcopirita</td>
<td>Cielo abierto</td>
</tr>
<tr>
<td>87</td>
<td>Qz</td>
<td>Electra</td>
<td>-32.4378019°</td>
<td>-64.9196540°</td>
<td>Yacinto de Calamuchita</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Orдовико</td>
<td>Cuarzo, feldespato, mica, berilo</td>
<td>Canteras y galerías</td>
</tr>
<tr>
<td>88</td>
<td>Qz</td>
<td>Maria Teresa</td>
<td>-32.4399039°</td>
<td>-64.8917171°</td>
<td>Yacinto de Calamuchita</td>
<td>Pegmatita</td>
<td>Cizalla Tres Arboles</td>
<td>Orдовико</td>
<td>Cuarzo, feldespato, mica, berilo</td>
<td>Canteras y galerías</td>
</tr>
<tr>
<td>89</td>
<td>W</td>
<td>Rodeo Lindo</td>
<td>-32.4409649°</td>
<td>-64.8186730°</td>
<td>Rio de Los Sauces</td>
<td>Granito</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Wolfanita</td>
<td>Subterránea y a cielo abierto</td>
</tr>
<tr>
<td>90</td>
<td>Cr</td>
<td>Resistencia Y Destino</td>
<td>-32.4410265°</td>
<td>-64.5692256°</td>
<td>Rio de Los Sauces</td>
<td>Ultrabásicas</td>
<td>Complejo Comechingones</td>
<td>Cámbrico</td>
<td>Cromita, magnetita, hematita, ilmenita y calcopirita</td>
<td>Cielo abierto</td>
</tr>
<tr>
<td>Hoja Geológica 3366-II</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colo abierto</td>
<td>Cretácico</td>
<td>Complejo Conchimera</td>
<td>Ultrabasitas</td>
<td>Rio de los Sauces</td>
<td>B. C.</td>
<td>N. C.</td>
<td>Paz</td>
<td>San Vírgilio</td>
<td>Piedra</td>
<td>Fisher</td>
</tr>
<tr>
<td>Granito</td>
<td>Devónico</td>
<td>Ordovícico</td>
<td>Granito</td>
<td>Granito</td>
<td>Granito</td>
<td>Granito</td>
<td>Granito</td>
<td>Granito</td>
<td>Granito</td>
<td>Granito</td>
</tr>
<tr>
<td>Wolframita</td>
</tr>
<tr>
<td>Código</td>
<td>Grupo</td>
<td>Ubicación</td>
<td>Latitud</td>
<td>Longitud</td>
<td>Provincia</td>
<td>Corte Geológico</td>
<td>Grupo</td>
<td>Fase</td>
<td>Composición Mineralógica</td>
<td>Activo</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td>----------------</td>
<td>-------</td>
<td>-----</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>110</td>
<td>Fi</td>
<td>Los Cerros Negros</td>
<td>-32.5034459°</td>
<td>-64.7931119°</td>
<td>Rio de Los Sauces</td>
<td>Veta hidrometal</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y galeitas</td>
</tr>
<tr>
<td>111</td>
<td>Fi</td>
<td>31 De Julio De 1896</td>
<td>-32.5114009°</td>
<td>-64.7868136°</td>
<td>Rio de Los Sauces</td>
<td>Veta hidrometal</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y galeitas</td>
</tr>
<tr>
<td>112</td>
<td>Pb Zn Ag Cu</td>
<td>SN</td>
<td>-32.5185679°</td>
<td>-65.5609870°</td>
<td>Guanaco Pampa</td>
<td>Esquistos y gneises</td>
<td>Complejo Conlara</td>
<td>Ordovícico</td>
<td>esferita, galena, pirita, calcopirita, marcasita</td>
<td>Piques y galeitas</td>
</tr>
<tr>
<td>113</td>
<td>W</td>
<td>El Perón</td>
<td>-32.5218199°</td>
<td>-65.3287020°</td>
<td>El Perón</td>
<td>Granito</td>
<td>Granito El Perón</td>
<td>Ordovícico</td>
<td>Wolfamita</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Pb Zn Ag Cu</td>
<td>Los Alamos 2</td>
<td>-32.5265439°</td>
<td>-65.4039420°</td>
<td>Los Alamos</td>
<td>Esquistos y gneises</td>
<td>Complejo Conlara</td>
<td>Ordovícico</td>
<td>esferita, galena, pirita, calcopirita, marcasita</td>
<td>Piques y galeitas</td>
</tr>
<tr>
<td>115</td>
<td>W</td>
<td>Distrito Va Praga</td>
<td>-32.5328308°</td>
<td>-65.6609833°</td>
<td>Va Praga</td>
<td>Mármol y pegmatitas</td>
<td>Complejo Conlara</td>
<td>Ordovícico</td>
<td>Scheelita</td>
<td>Canteras</td>
</tr>
<tr>
<td>116</td>
<td>Fi</td>
<td>San Cayetano</td>
<td>-32.5360658°</td>
<td>-64.7730388°</td>
<td>Rio de Los Sauces</td>
<td>Veta hidrometal</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y galeitas</td>
</tr>
<tr>
<td>117</td>
<td>A. del A.</td>
<td>San Miguel</td>
<td>-32.5391591°</td>
<td>-64.9746447°</td>
<td>San Miguel</td>
<td>Bancos Arcillosos, Dep de Pie de Monte</td>
<td>Cuate</td>
<td>Canteras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>W</td>
<td>SN</td>
<td>-32.5480119°</td>
<td>-65.6780239°</td>
<td>Va Praga</td>
<td>Esquistos</td>
<td>Complejo Conlara</td>
<td>Ordovícico</td>
<td>Wolfamita</td>
<td>Manifestación</td>
</tr>
<tr>
<td>119</td>
<td>Fi</td>
<td>La Italo</td>
<td>-32.5681348°</td>
<td>-64.9139728°</td>
<td>Va Larca</td>
<td>Veta hidrometal</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y piques</td>
</tr>
<tr>
<td>120</td>
<td>Fi</td>
<td>Francisco</td>
<td>-32.5732899°</td>
<td>-64.7642988°</td>
<td>Alpa Corral</td>
<td>Granito</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y piques</td>
</tr>
<tr>
<td>121</td>
<td>Fi</td>
<td>La Bubu</td>
<td>-32.5737678°</td>
<td>-64.9206351°</td>
<td>Va Larca</td>
<td>Veta hidrometal</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y galeitas</td>
</tr>
<tr>
<td>122</td>
<td>W</td>
<td>Los Condores</td>
<td>-32.5748199°</td>
<td>-65.3202240°</td>
<td>Sta. Rosa de Conlara</td>
<td>Esquistos y gneises</td>
<td>Complejo Conlara</td>
<td>Ordovícico</td>
<td>Wolfamita y scheelita</td>
<td>Subterráneas</td>
</tr>
<tr>
<td>123</td>
<td>Fi</td>
<td>Santa María</td>
<td>-32.5792872°</td>
<td>-64.7633298°</td>
<td>Alpa Corral</td>
<td>Granito</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y piques</td>
</tr>
<tr>
<td>124</td>
<td>Fi</td>
<td>San Basilio</td>
<td>-32.5857285°</td>
<td>-64.7614117°</td>
<td>Alpa Corral</td>
<td>Granito</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y piques</td>
</tr>
<tr>
<td>125</td>
<td>UFL</td>
<td>La Estela</td>
<td>-32.5869925°</td>
<td>-64.9337776°</td>
<td>Va Larca</td>
<td>Granito</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>pechblenda, pirita y calcopirita, uranofano- aurífera</td>
<td>Subterráneas y a cielo abierto</td>
</tr>
<tr>
<td>126</td>
<td>W</td>
<td>SN</td>
<td>-32.6121239°</td>
<td>-65.6565680°</td>
<td>Va Praga</td>
<td>Esquistos</td>
<td>Complejo Conlara</td>
<td>Ordovícico</td>
<td>Wolfamita</td>
<td>Manifestación</td>
</tr>
<tr>
<td>127</td>
<td>A. del A.</td>
<td>Barranca de Calvario</td>
<td>-32.6134166°</td>
<td>-64.9748333°</td>
<td>Va Larca</td>
<td>Bancos arcillosos, Dep de Pie de Monte</td>
<td>Cuate</td>
<td>Canteras</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Fi</td>
<td>Confinanza</td>
<td>-32.6281854°</td>
<td>-64.7713434°</td>
<td>Alpa Corral</td>
<td>Granito</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y piques</td>
</tr>
<tr>
<td>129</td>
<td>Fi</td>
<td>Ubalquina</td>
<td>-32.6284846°</td>
<td>-64.9079805°</td>
<td>Va Larca</td>
<td>Veta hidrometal</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y galeitas</td>
</tr>
<tr>
<td>130</td>
<td>Fi</td>
<td>Don Miguel</td>
<td>-32.6331062°</td>
<td>-64.9193551°</td>
<td>Va Larca</td>
<td>Granito</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y piques</td>
</tr>
<tr>
<td>131</td>
<td>Fi</td>
<td>Doña Laura</td>
<td>-32.6353201°</td>
<td>-64.7725287°</td>
<td>Alpa Corral</td>
<td>Granito</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y piques</td>
</tr>
<tr>
<td>132</td>
<td>Fi</td>
<td>La Saida</td>
<td>-32.6447309°</td>
<td>-64.7547974°</td>
<td>Alpa Corral</td>
<td>Veta hidrometal</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y galeitas</td>
</tr>
<tr>
<td>133</td>
<td>Fi</td>
<td>La Cabecita</td>
<td>-32.6513899°</td>
<td>-64.9489373°</td>
<td>Va Larca</td>
<td>Veta hidrometal</td>
<td>Complejo Co Áspero</td>
<td>Devónico</td>
<td>Fluorita</td>
<td>Rajs y galeitas</td>
</tr>
</tbody>
</table>

Villa de Merlo
<table>
<thead>
<tr>
<th>Coda</th>
<th>Nombre del Codo</th>
<th>Número</th>
<th>Velocidad (m/s)</th>
<th>Formación</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>San Antonio</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>101</td>
<td>La Alberca</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>102</td>
<td>Los Reos</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>103</td>
<td>Alpa Corral</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>104</td>
<td>El Potro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>105</td>
<td>La Nueva Pampa</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>106</td>
<td>San Pedro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>107</td>
<td>La Alberca</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>108</td>
<td>Los Reos</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>109</td>
<td>Alpa Corral</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>110</td>
<td>El Potro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>111</td>
<td>La Nueva Pampa</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>112</td>
<td>San Pedro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>113</td>
<td>La Alberca</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>114</td>
<td>Los Reos</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>115</td>
<td>Alpa Corral</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>116</td>
<td>El Potro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>117</td>
<td>La Nueva Pampa</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>118</td>
<td>San Pedro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>119</td>
<td>La Alberca</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>120</td>
<td>Los Reos</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>121</td>
<td>Alpa Corral</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>122</td>
<td>El Potro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>123</td>
<td>La Nueva Pampa</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>124</td>
<td>San Pedro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>125</td>
<td>La Alberca</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>126</td>
<td>Los Reos</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>127</td>
<td>Alpa Corral</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>128</td>
<td>El Potro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>129</td>
<td>La Nueva Pampa</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>130</td>
<td>San Pedro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>131</td>
<td>La Alberca</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>132</td>
<td>Los Reos</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>133</td>
<td>Alpa Corral</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>134</td>
<td>El Potro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>135</td>
<td>La Nueva Pampa</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>136</td>
<td>San Pedro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>137</td>
<td>La Alberca</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>138</td>
<td>Los Reos</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>139</td>
<td>Alpa Corral</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>140</td>
<td>El Potro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>141</td>
<td>La Nueva Pampa</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>142</td>
<td>San Pedro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>143</td>
<td>La Alberca</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>144</td>
<td>Los Reos</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>145</td>
<td>Alpa Corral</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>146</td>
<td>El Potro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>147</td>
<td>La Nueva Pampa</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>148</td>
<td>San Pedro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>149</td>
<td>La Alberca</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>150</td>
<td>Los Reos</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>151</td>
<td>Alpa Corral</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>152</td>
<td>El Potro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>153</td>
<td>La Nueva Pampa</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>154</td>
<td>San Pedro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>155</td>
<td>La Alberca</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>156</td>
<td>Los Reos</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>157</td>
<td>Alpa Corral</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>158</td>
<td>El Potro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>159</td>
<td>La Nueva Pampa</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>160</td>
<td>San Pedro</td>
<td>32.696</td>
<td>45.690</td>
<td>Peñellios</td>
</tr>
<tr>
<td>N°</td>
<td>Barrio</td>
<td>Departamento</td>
<td>Comité</td>
<td>Zona</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>--------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Villa de Merlo</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hoja Geológica 3366-II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Mancha</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Rioja</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa María de la Sierra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuenca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castilla y León</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código</th>
<th>Descarga</th>
<th>Promoción</th>
</tr>
</thead>
<tbody>
<tr>
<td>189</td>
<td>Be</td>
<td>La Mancha</td>
</tr>
<tr>
<td>190</td>
<td>Ag, P, Zn</td>
<td>La Rioja</td>
</tr>
<tr>
<td>191</td>
<td>Al</td>
<td>Santa María de la Sierra</td>
</tr>
<tr>
<td>192</td>
<td>Cd</td>
<td>Cuenca</td>
</tr>
<tr>
<td>193</td>
<td>W</td>
<td>Castilla y León</td>
</tr>
<tr>
<td>194</td>
<td>Li</td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>Mbl</td>
<td>Co Moro</td>
</tr>
<tr>
<td>214</td>
<td>W</td>
<td>San Felipe</td>
</tr>
<tr>
<td>215</td>
<td>Be</td>
<td>La Tinta</td>
</tr>
<tr>
<td>216</td>
<td>Be Mica</td>
<td>Silgra</td>
</tr>
<tr>
<td>217</td>
<td>Au</td>
<td>Aluvion Aurífero</td>
</tr>
<tr>
<td>218</td>
<td>W</td>
<td>San José del Paso Grande</td>
</tr>
<tr>
<td>219</td>
<td>Be</td>
<td>Piedra Agüita</td>
</tr>
<tr>
<td>220</td>
<td>Au</td>
<td>La Negra</td>
</tr>
<tr>
<td>221</td>
<td>Be</td>
<td>4 Junio</td>
</tr>
<tr>
<td>222</td>
<td>Pb Ag Zn</td>
<td>La Union</td>
</tr>
<tr>
<td>223</td>
<td>Be Mica</td>
<td>Los Quinteros</td>
</tr>
<tr>
<td>224</td>
<td>Au</td>
<td>Aluvión Aurífero</td>
</tr>
<tr>
<td>225</td>
<td>W</td>
<td>SN</td>
</tr>
<tr>
<td>226</td>
<td>Ag Pb Zn</td>
<td>Santa Ana</td>
</tr>
<tr>
<td>227</td>
<td>Pb Ag Zn</td>
<td>Humberto Ll</td>
</tr>
<tr>
<td>228</td>
<td>Be</td>
<td>Paso Grande l</td>
</tr>
<tr>
<td>229</td>
<td>Be</td>
<td>Cuarzol Tercero</td>
</tr>
<tr>
<td>230</td>
<td>Au</td>
<td>Aluvion Aurífero</td>
</tr>
<tr>
<td>231</td>
<td>Be</td>
<td>Paso Grande l</td>
</tr>
<tr>
<td>232</td>
<td>Au</td>
<td>Aluvion Aurífero</td>
</tr>
<tr>
<td>233</td>
<td>Au</td>
<td>Aluvion Aurífero</td>
</tr>
<tr>
<td>234</td>
<td>Fi</td>
<td>La Casa de Piedra Rosada</td>
</tr>
<tr>
<td>235</td>
<td>Ag Pb Zn</td>
<td>Celia</td>
</tr>
<tr>
<td>Código</td>
<td>Localidad</td>
<td>Formación</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>236</td>
<td>Au</td>
<td>Aluvion Aurof de Mineral</td>
</tr>
<tr>
<td>237</td>
<td>Au</td>
<td>La China</td>
</tr>
<tr>
<td>238</td>
<td>Au</td>
<td>Aluvion Aurof</td>
</tr>
<tr>
<td>239</td>
<td>Au</td>
<td>Aluvion Aurof</td>
</tr>
<tr>
<td>240</td>
<td>W</td>
<td>El Tajo</td>
</tr>
<tr>
<td>241</td>
<td>W</td>
<td>El Tajo</td>
</tr>
<tr>
<td>242</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>243</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>244</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>245</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>246</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>247</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>248</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>249</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>250</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>251</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>252</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>253</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>254</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>255</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>256</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>257</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>258</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>259</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>260</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>261</td>
<td>W</td>
<td>La Higuera</td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Latitud</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>262</td>
<td>Villa de Merlo</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>258</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>254</td>
<td>Be 19 Ta 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>249</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>245</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>241</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>237</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>233</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>229</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>225</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>221</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>217</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>213</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>209</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>205</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>201</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>197</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>193</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>189</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>185</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>181</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>177</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>173</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>169</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>165</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>161</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>157</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>153</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>149</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>145</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>141</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>137</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>133</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>129</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>125</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>121</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>117</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>113</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>109</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>105</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>101</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>97</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>93</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>89</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>85</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>81</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>77</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>73</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>69</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>65</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>61</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>57</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>53</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>49</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>45</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>41</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>37</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>33</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>29</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>25</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>21</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>17</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>13</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
<tr>
<td>9</td>
<td>Be 4 Be 19 Ta</td>
<td>-32.956589°</td>
</tr>
</tbody>
</table>